Banach space and Hilbert space topologyIs any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space

Motorized valve interfering with button?

How is this relation reflexive?

How can I automatically replace [[ and ]] with the [LeftDoubleBracket] and [RightDoubleBracket] operators?

How to add power-LED to my small amplifier?

Patience, young "Padovan"

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

How can I fix this gap between bookcases I made?

Can I interfere when another PC is about to be attacked?

XeLaTeX and pdfLaTeX ignore hyphenation

Book about a traveler who helps planets in need

I probably found a bug with the sudo apt install function

How can bays and straits be determined in a procedurally generated map?

Why is "Reports" in sentence down without "The"

How long does it take to type this?

What are these boxed doors outside store fronts in New York?

How to report a triplet of septets in NMR tabulation?

Can a German sentence have two subjects?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Set-theoretical foundations of Mathematics with only bounded quantifiers

What defenses are there against being summoned by the Gate spell?

What would happen to a modern skyscraper if it rains micro blackholes?

DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?

How to get the available space of $HOME as a variable in shell scripting?

What do you call a Matrix-like slowdown and camera movement effect?



Banach space and Hilbert space topology


Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space













1












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    1 hour ago






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    58 mins ago















1












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    1 hour ago






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    58 mins ago













1












1








1





$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$




Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?







general-topology functional-analysis hilbert-spaces banach-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 58 mins ago









Henno Brandsma

115k349125




115k349125










asked 1 hour ago









user156213user156213

60338




60338







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    1 hour ago






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    58 mins ago












  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    1 hour ago






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    58 mins ago







1




1




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago




1




1




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
58 mins ago




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
58 mins ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



    So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






    share|cite|improve this answer









    $endgroup$

















      5












      $begingroup$

      Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



      So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






      share|cite|improve this answer









      $endgroup$















        5












        5








        5





        $begingroup$

        Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



        So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






        share|cite|improve this answer









        $endgroup$



        Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



        So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 59 mins ago









        Henno BrandsmaHenno Brandsma

        115k349125




        115k349125



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

            शेव्रोले वोल्ट अनुक्रम इतिहास इन्हे भी देखें चित्र दीर्घा संदर्भ दिक्चालन सूची

            चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि