Question about the proof of Second Isomorphism TheoremIsomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem
Pre-mixing cryogenic fuels and using only one fuel tank
Which one is correct as adjective “protruding” or “protruded”?
What is the evidence for the "tyranny of the majority problem" in a direct democracy context?
Count the occurrence of each unique word in the file
Is a bound state a stationary state?
Creature in Shazam mid-credits scene?
What should you do if you miss a job interview (deliberately)?
Is there a working SACD iso player for Ubuntu?
Aragorn's "guise" in the Orthanc Stone
Is this toilet slogan correct usage of the English language?
Delivering sarcasm
Where did Heinlein say "Once you get to Earth orbit, you're halfway to anywhere in the Solar System"?
Why do we read the Megillah by night and by day?
How much character growth crosses the line into breaking the character
Can someone explain how this makes sense electrically?
Lowest total scrabble score
How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?
If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?
How should I respond when I lied about my education and the company finds out through background check?
Where does the bonus feat in the cleric starting package come from?
Energy measurement from position eigenstate
GraphicsGrid with a Label for each Column and Row
What prevents the use of a multi-segment ILS for non-straight approaches?
Biological Blimps: Propulsion
Question about the proof of Second Isomorphism Theorem
Isomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
add a comment |
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
add a comment |
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
New contributor
edited 4 hours ago
Andrews
1,2761421
1,2761421
New contributor
asked 4 hours ago
NiaBieNiaBie
232
232
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
answered 4 hours ago
Joshua MundingerJoshua Mundinger
2,7621028
2,7621028
add a comment |
add a comment |
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown