Existing of non-intersecting raysConstructing a circle through a point in the interior of an angleHow many rays can made from $4$ collinear points?Angle between different rays (3d line segments) and computing their angular relationshipsIntersecting three rays and a sphere of known radiusDesigning a distance function between raysLines between point and sphere surface intersecting a planeIntersecting planes stereometry problemIs a single line, line segment, or ray a valid angle?Coxeter, Introduction to Geometry, ordered geometry, parallelism of rays and linesNon-congruent angle of an isosceles triangle

Removing files under particular conditions (number of files, file age)

Lowest total scrabble score

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

2.8 Why are collections grayed out? How can I open them?

What is this called? Old film camera viewer?

A social experiment. What is the worst that can happen?

Is it better practice to read straight from sheet music rather than memorize it?

How to explain what's wrong with this application of the chain rule?

Can I sign legal documents with a smiley face?

Delivering sarcasm

What if a revenant (monster) gains fire resistance?

The screen of my macbook suddenly broken down how can I do to recover

Is it possible to have a strip of cold climate in the middle of a planet?

Redundant comparison & "if" before assignment

"Spoil" vs "Ruin"

Loading commands from file

Fear of getting stuck on one programming language / technology that is not used in my country

Why did the Mercure fail?

Create all possible words using a set or letters

copy and scale one figure (wheel)

Open a doc from terminal, but not by its name

How to indicate a cut out for a product window

Why Shazam when there is already Superman?

How do I find all files that end with a dot



Existing of non-intersecting rays


Constructing a circle through a point in the interior of an angleHow many rays can made from $4$ collinear points?Angle between different rays (3d line segments) and computing their angular relationshipsIntersecting three rays and a sphere of known radiusDesigning a distance function between raysLines between point and sphere surface intersecting a planeIntersecting planes stereometry problemIs a single line, line segment, or ray a valid angle?Coxeter, Introduction to Geometry, ordered geometry, parallelism of rays and linesNon-congruent angle of an isosceles triangle













2












$begingroup$


Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



But how to prove this?










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



    But how to prove this?










    share|cite|improve this question









    $endgroup$














      2












      2








      2


      1



      $begingroup$


      Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



      But how to prove this?










      share|cite|improve this question









      $endgroup$




      Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



      But how to prove this?







      geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 25 mins ago









      athosathos

      98611340




      98611340




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            13 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            13 mins ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160029%2fexisting-of-non-intersecting-rays%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            13 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            13 mins ago















          2












          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            13 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            13 mins ago













          2












          2








          2





          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$



          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 8 mins ago

























          answered 14 mins ago









          FredHFredH

          2,6041021




          2,6041021











          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            13 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            13 mins ago
















          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            13 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            13 mins ago















          $begingroup$
          +1 for being slightly faster than me :)
          $endgroup$
          – Severin Schraven
          13 mins ago




          $begingroup$
          +1 for being slightly faster than me :)
          $endgroup$
          – Severin Schraven
          13 mins ago












          $begingroup$
          Thx ! This is a “oh of course “ moment of me
          $endgroup$
          – athos
          13 mins ago




          $begingroup$
          Thx ! This is a “oh of course “ moment of me
          $endgroup$
          – athos
          13 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160029%2fexisting-of-non-intersecting-rays%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

          शेव्रोले वोल्ट अनुक्रम इतिहास इन्हे भी देखें चित्र दीर्घा संदर्भ दिक्चालन सूची

          चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि