Project Euler #11 Largest Product in a Grid | Cache-optimized + sliding window (C++14)Project Euler 11 - Largest Product in a gridLooks at order data and arranges it to focus on order locationsReturn row or column from a 2D arrayProject Euler - Largest Product In A GridProject Euler #11 Largest product in a gridProject Euler GUI for Problem #1 through #11Project Euler #43Project Euler 11: Largest product in a grid, Python3C++ Parsing with chain of responsibilityCodility: MaxZeroProduct - complexity issues

Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?

How do I find the solutions of the following equation?

Short story about space worker geeks who zone out by 'listening' to radiation from stars

A particular customize with green line and letters for subfloat

Did Dumbledore lie to Harry about how long he had James Potter's invisibility cloak when he was examining it? If so, why?

How do we know the LHC results are robust?

How long to clear the 'suck zone' of a turbofan after start is initiated?

Detecting if an element is found inside a container

Failed to fetch jessie backports repository

Is this apparent Class Action settlement a spam message?

Unreliable Magic - Is it worth it?

Is oxalic acid dihydrate considered a primary acid standard in analytical chemistry?

Term for the "extreme-extension" version of a straw man fallacy?

Method to test if a number is a perfect power?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

How to check is there any negative term in a large list?

Pre-amplifier input protection

Roman Numeral Treatment of Suspensions

How do scammers retract money, while you can’t?

What is the opposite of 'gravitas'?

Sort a list by elements of another list

Why Were Madagascar and New Zealand Discovered So Late?

Two monoidal structures and copowering

How did Doctor Strange see the winning outcome in Avengers: Infinity War?



Project Euler #11 Largest Product in a Grid | Cache-optimized + sliding window (C++14)


Project Euler 11 - Largest Product in a gridLooks at order data and arranges it to focus on order locationsReturn row or column from a 2D arrayProject Euler - Largest Product In A GridProject Euler #11 Largest product in a gridProject Euler GUI for Problem #1 through #11Project Euler #43Project Euler 11: Largest product in a grid, Python3C++ Parsing with chain of responsibilityCodility: MaxZeroProduct - complexity issues













0












$begingroup$


Source: HackerRank & ProjectEuler.net



Problem: Largest Product in a Grid

In the 20×20 grid below, four numbers along a diagonal line have been marked in red.



08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10(26)38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95(63)94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17(78)78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35(14)00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


The product of these numbers is 26 × 63 × 78 × 14 = 1788696.



What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?



Input

Input consists of 20 lines each containing 20 integers.



Output

Print the required answer.



Limits

0 ≤ each integer in the grid ≤ 100



Sample

Input



89 90 95 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


Output



73812150


My solution (C++14)



#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <numeric>

// 2D grid represented by 1D vector for cache optimization
auto getGrid(int rows, int columns)
auto values = rows * columns;
std::vector<int> grid(values);
std::copy_n(std::istream_iterator<int>(std::cin), values, grid.begin());
return grid;


class LargestProductInAGrid
public:
LargestProductInAGrid(std::vector<int> &grid, int rows, int columns, int nAdjacents) : grid_(grid), rows_(rows),
columns_(columns),
nAdjacents_(nAdjacents)

auto largestProductInAGrid()
long long largestProduct = 0;

for (auto row = 0; row < rows_; row++)
largestProduct = std::max(largestProduct, largestProductInARow(row));


for (auto column = 0; column < columns_; column++)
largestProduct = std::max(largestProduct, largestProductInAColumn(column));
largestProduct = std::max(largestProduct, largestProductInARightDiagonal(column));
largestProduct = std::max(largestProduct, largestProductInALeftDiagonal(column));


return largestProduct;


private:
long long largestProductInARow(int row)
int low = row * columns_, end = low + columns_;
long long currentProduct = 0, highestProduct = 0;

while (low + nAdjacents_ - 1 < end)
if (currentProduct == 0)
currentProduct = std::accumulate(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 1LL,
std::multiplies<>());
else
currentProduct /= grid_[low - 1];
currentProduct *= grid_[low + nAdjacents_ - 1];


if (currentProduct == 0)
auto zero = std::find(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 0);
low += zero - (grid_.begin() + low) + 1;
else
low++;


highestProduct = std::max(highestProduct, currentProduct);


return highestProduct;


int oneDIndex(int row, int column)
return row * columns_ + column;


long long largestProductInAColumn(int column)
int row = 0;
long long currentProduct = 0, highestProduct = 0;

while (row + nAdjacents_ - 1 < rows_)
if (currentProduct == 0)
currentProduct = 1;
for (int i = row; i < row + nAdjacents_; i++)
currentProduct *= grid_[oneDIndex(i, column)];

else
currentProduct /= grid_[oneDIndex(row - 1, column)];
currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column)];


if (currentProduct == 0)
while (grid_[oneDIndex(row, column)] != 0)
row++;



row++;

highestProduct = std::max(highestProduct, currentProduct);


return highestProduct;


long long largestProductInARightDiagonal(int startingColumn)
int row = 0, column = startingColumn;
long long currentProduct = 0, highestProduct = 0;

while (row + nAdjacents_ - 1 < rows_ && column + nAdjacents_ - 1 < columns_)
if (currentProduct == 0)
currentProduct = 1;
for (int i = row; i < row + nAdjacents_; i++)
currentProduct *= grid_[oneDIndex(i, column + i)];

else
currentProduct /= grid_[oneDIndex(row - 1, column - 1)];
currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column + nAdjacents_ - 1)];


if (currentProduct == 0)
while (grid_[oneDIndex(row, column)] != 0)
row++, column++;



row++, column++;

highestProduct = std::max(highestProduct, currentProduct);


return highestProduct;


long long largestProductInALeftDiagonal(int startingColumn)
int row = 0, column = startingColumn;
long long currentProduct = 0, highestProduct = 0;

while (row + nAdjacents_ - 1 < rows_ && column - nAdjacents_ + 1 >= 0)
if (currentProduct == 0)
currentProduct = 1;
for (int i = row; i < row + nAdjacents_; i++)
currentProduct *= grid_[oneDIndex(i, column - i)];

else
currentProduct /= grid_[oneDIndex(row - 1, column + 1)];
currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column - nAdjacents_ + 1)];


if (currentProduct == 0)
while (grid_[oneDIndex(row, column)] != 0)
row++, column--;



row++, column--;

highestProduct = std::max(highestProduct, currentProduct);


return highestProduct;


std::vector<int> grid_;
int rows_;
int columns_;
int nAdjacents_;
;

int main()
const int rows = 20, columns = 20, nAdjacents = 4;
auto grid = getGrid(rows, columns);
LargestProductInAGrid solution(grid, rows, columns, nAdjacents);
std::cout << solution.largestProductInAGrid() << std::endl;



Analysis

Time complexity: $O(r * c)$

Space complexity: $O(1)$, not counting initial data



Comments

In the past, I solved this problem when I was learning to program using the brute force method. This time, I wanted to optimize it for performance while maintaining a reasonable standard of readability.









share







New contributor




Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    Source: HackerRank & ProjectEuler.net



    Problem: Largest Product in a Grid

    In the 20×20 grid below, four numbers along a diagonal line have been marked in red.



    08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
    49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
    81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
    52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
    22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
    24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
    32 98 81 28 64 23 67 10(26)38 40 67 59 54 70 66 18 38 64 70
    67 26 20 68 02 62 12 20 95(63)94 39 63 08 40 91 66 49 94 21
    24 55 58 05 66 73 99 26 97 17(78)78 96 83 14 88 34 89 63 72
    21 36 23 09 75 00 76 44 20 45 35(14)00 61 33 97 34 31 33 95
    78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
    16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
    86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
    19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
    04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
    88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
    04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
    20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
    20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
    01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


    The product of these numbers is 26 × 63 × 78 × 14 = 1788696.



    What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?



    Input

    Input consists of 20 lines each containing 20 integers.



    Output

    Print the required answer.



    Limits

    0 ≤ each integer in the grid ≤ 100



    Sample

    Input



    89 90 95 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 
    49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
    81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
    52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
    22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
    24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
    32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
    67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
    24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
    21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
    78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
    16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
    86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
    19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
    04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
    88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
    04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
    20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
    20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
    01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


    Output



    73812150


    My solution (C++14)



    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <iterator>
    #include <numeric>

    // 2D grid represented by 1D vector for cache optimization
    auto getGrid(int rows, int columns)
    auto values = rows * columns;
    std::vector<int> grid(values);
    std::copy_n(std::istream_iterator<int>(std::cin), values, grid.begin());
    return grid;


    class LargestProductInAGrid
    public:
    LargestProductInAGrid(std::vector<int> &grid, int rows, int columns, int nAdjacents) : grid_(grid), rows_(rows),
    columns_(columns),
    nAdjacents_(nAdjacents)

    auto largestProductInAGrid()
    long long largestProduct = 0;

    for (auto row = 0; row < rows_; row++)
    largestProduct = std::max(largestProduct, largestProductInARow(row));


    for (auto column = 0; column < columns_; column++)
    largestProduct = std::max(largestProduct, largestProductInAColumn(column));
    largestProduct = std::max(largestProduct, largestProductInARightDiagonal(column));
    largestProduct = std::max(largestProduct, largestProductInALeftDiagonal(column));


    return largestProduct;


    private:
    long long largestProductInARow(int row)
    int low = row * columns_, end = low + columns_;
    long long currentProduct = 0, highestProduct = 0;

    while (low + nAdjacents_ - 1 < end)
    if (currentProduct == 0)
    currentProduct = std::accumulate(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 1LL,
    std::multiplies<>());
    else
    currentProduct /= grid_[low - 1];
    currentProduct *= grid_[low + nAdjacents_ - 1];


    if (currentProduct == 0)
    auto zero = std::find(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 0);
    low += zero - (grid_.begin() + low) + 1;
    else
    low++;


    highestProduct = std::max(highestProduct, currentProduct);


    return highestProduct;


    int oneDIndex(int row, int column)
    return row * columns_ + column;


    long long largestProductInAColumn(int column)
    int row = 0;
    long long currentProduct = 0, highestProduct = 0;

    while (row + nAdjacents_ - 1 < rows_)
    if (currentProduct == 0)
    currentProduct = 1;
    for (int i = row; i < row + nAdjacents_; i++)
    currentProduct *= grid_[oneDIndex(i, column)];

    else
    currentProduct /= grid_[oneDIndex(row - 1, column)];
    currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column)];


    if (currentProduct == 0)
    while (grid_[oneDIndex(row, column)] != 0)
    row++;



    row++;

    highestProduct = std::max(highestProduct, currentProduct);


    return highestProduct;


    long long largestProductInARightDiagonal(int startingColumn)
    int row = 0, column = startingColumn;
    long long currentProduct = 0, highestProduct = 0;

    while (row + nAdjacents_ - 1 < rows_ && column + nAdjacents_ - 1 < columns_)
    if (currentProduct == 0)
    currentProduct = 1;
    for (int i = row; i < row + nAdjacents_; i++)
    currentProduct *= grid_[oneDIndex(i, column + i)];

    else
    currentProduct /= grid_[oneDIndex(row - 1, column - 1)];
    currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column + nAdjacents_ - 1)];


    if (currentProduct == 0)
    while (grid_[oneDIndex(row, column)] != 0)
    row++, column++;



    row++, column++;

    highestProduct = std::max(highestProduct, currentProduct);


    return highestProduct;


    long long largestProductInALeftDiagonal(int startingColumn)
    int row = 0, column = startingColumn;
    long long currentProduct = 0, highestProduct = 0;

    while (row + nAdjacents_ - 1 < rows_ && column - nAdjacents_ + 1 >= 0)
    if (currentProduct == 0)
    currentProduct = 1;
    for (int i = row; i < row + nAdjacents_; i++)
    currentProduct *= grid_[oneDIndex(i, column - i)];

    else
    currentProduct /= grid_[oneDIndex(row - 1, column + 1)];
    currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column - nAdjacents_ + 1)];


    if (currentProduct == 0)
    while (grid_[oneDIndex(row, column)] != 0)
    row++, column--;



    row++, column--;

    highestProduct = std::max(highestProduct, currentProduct);


    return highestProduct;


    std::vector<int> grid_;
    int rows_;
    int columns_;
    int nAdjacents_;
    ;

    int main()
    const int rows = 20, columns = 20, nAdjacents = 4;
    auto grid = getGrid(rows, columns);
    LargestProductInAGrid solution(grid, rows, columns, nAdjacents);
    std::cout << solution.largestProductInAGrid() << std::endl;



    Analysis

    Time complexity: $O(r * c)$

    Space complexity: $O(1)$, not counting initial data



    Comments

    In the past, I solved this problem when I was learning to program using the brute force method. This time, I wanted to optimize it for performance while maintaining a reasonable standard of readability.









    share







    New contributor




    Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      Source: HackerRank & ProjectEuler.net



      Problem: Largest Product in a Grid

      In the 20×20 grid below, four numbers along a diagonal line have been marked in red.



      08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
      49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
      81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
      52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
      22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
      24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
      32 98 81 28 64 23 67 10(26)38 40 67 59 54 70 66 18 38 64 70
      67 26 20 68 02 62 12 20 95(63)94 39 63 08 40 91 66 49 94 21
      24 55 58 05 66 73 99 26 97 17(78)78 96 83 14 88 34 89 63 72
      21 36 23 09 75 00 76 44 20 45 35(14)00 61 33 97 34 31 33 95
      78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
      16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
      86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
      19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
      04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
      88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
      04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
      20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
      20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
      01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


      The product of these numbers is 26 × 63 × 78 × 14 = 1788696.



      What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?



      Input

      Input consists of 20 lines each containing 20 integers.



      Output

      Print the required answer.



      Limits

      0 ≤ each integer in the grid ≤ 100



      Sample

      Input



      89 90 95 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 
      49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
      81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
      52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
      22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
      24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
      32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
      67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
      24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
      21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
      78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
      16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
      86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
      19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
      04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
      88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
      04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
      20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
      20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
      01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


      Output



      73812150


      My solution (C++14)



      #include <iostream>
      #include <vector>
      #include <algorithm>
      #include <iterator>
      #include <numeric>

      // 2D grid represented by 1D vector for cache optimization
      auto getGrid(int rows, int columns)
      auto values = rows * columns;
      std::vector<int> grid(values);
      std::copy_n(std::istream_iterator<int>(std::cin), values, grid.begin());
      return grid;


      class LargestProductInAGrid
      public:
      LargestProductInAGrid(std::vector<int> &grid, int rows, int columns, int nAdjacents) : grid_(grid), rows_(rows),
      columns_(columns),
      nAdjacents_(nAdjacents)

      auto largestProductInAGrid()
      long long largestProduct = 0;

      for (auto row = 0; row < rows_; row++)
      largestProduct = std::max(largestProduct, largestProductInARow(row));


      for (auto column = 0; column < columns_; column++)
      largestProduct = std::max(largestProduct, largestProductInAColumn(column));
      largestProduct = std::max(largestProduct, largestProductInARightDiagonal(column));
      largestProduct = std::max(largestProduct, largestProductInALeftDiagonal(column));


      return largestProduct;


      private:
      long long largestProductInARow(int row)
      int low = row * columns_, end = low + columns_;
      long long currentProduct = 0, highestProduct = 0;

      while (low + nAdjacents_ - 1 < end)
      if (currentProduct == 0)
      currentProduct = std::accumulate(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 1LL,
      std::multiplies<>());
      else
      currentProduct /= grid_[low - 1];
      currentProduct *= grid_[low + nAdjacents_ - 1];


      if (currentProduct == 0)
      auto zero = std::find(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 0);
      low += zero - (grid_.begin() + low) + 1;
      else
      low++;


      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      int oneDIndex(int row, int column)
      return row * columns_ + column;


      long long largestProductInAColumn(int column)
      int row = 0;
      long long currentProduct = 0, highestProduct = 0;

      while (row + nAdjacents_ - 1 < rows_)
      if (currentProduct == 0)
      currentProduct = 1;
      for (int i = row; i < row + nAdjacents_; i++)
      currentProduct *= grid_[oneDIndex(i, column)];

      else
      currentProduct /= grid_[oneDIndex(row - 1, column)];
      currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column)];


      if (currentProduct == 0)
      while (grid_[oneDIndex(row, column)] != 0)
      row++;



      row++;

      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      long long largestProductInARightDiagonal(int startingColumn)
      int row = 0, column = startingColumn;
      long long currentProduct = 0, highestProduct = 0;

      while (row + nAdjacents_ - 1 < rows_ && column + nAdjacents_ - 1 < columns_)
      if (currentProduct == 0)
      currentProduct = 1;
      for (int i = row; i < row + nAdjacents_; i++)
      currentProduct *= grid_[oneDIndex(i, column + i)];

      else
      currentProduct /= grid_[oneDIndex(row - 1, column - 1)];
      currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column + nAdjacents_ - 1)];


      if (currentProduct == 0)
      while (grid_[oneDIndex(row, column)] != 0)
      row++, column++;



      row++, column++;

      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      long long largestProductInALeftDiagonal(int startingColumn)
      int row = 0, column = startingColumn;
      long long currentProduct = 0, highestProduct = 0;

      while (row + nAdjacents_ - 1 < rows_ && column - nAdjacents_ + 1 >= 0)
      if (currentProduct == 0)
      currentProduct = 1;
      for (int i = row; i < row + nAdjacents_; i++)
      currentProduct *= grid_[oneDIndex(i, column - i)];

      else
      currentProduct /= grid_[oneDIndex(row - 1, column + 1)];
      currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column - nAdjacents_ + 1)];


      if (currentProduct == 0)
      while (grid_[oneDIndex(row, column)] != 0)
      row++, column--;



      row++, column--;

      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      std::vector<int> grid_;
      int rows_;
      int columns_;
      int nAdjacents_;
      ;

      int main()
      const int rows = 20, columns = 20, nAdjacents = 4;
      auto grid = getGrid(rows, columns);
      LargestProductInAGrid solution(grid, rows, columns, nAdjacents);
      std::cout << solution.largestProductInAGrid() << std::endl;



      Analysis

      Time complexity: $O(r * c)$

      Space complexity: $O(1)$, not counting initial data



      Comments

      In the past, I solved this problem when I was learning to program using the brute force method. This time, I wanted to optimize it for performance while maintaining a reasonable standard of readability.









      share







      New contributor




      Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Source: HackerRank & ProjectEuler.net



      Problem: Largest Product in a Grid

      In the 20×20 grid below, four numbers along a diagonal line have been marked in red.



      08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
      49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
      81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
      52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
      22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
      24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
      32 98 81 28 64 23 67 10(26)38 40 67 59 54 70 66 18 38 64 70
      67 26 20 68 02 62 12 20 95(63)94 39 63 08 40 91 66 49 94 21
      24 55 58 05 66 73 99 26 97 17(78)78 96 83 14 88 34 89 63 72
      21 36 23 09 75 00 76 44 20 45 35(14)00 61 33 97 34 31 33 95
      78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
      16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
      86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
      19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
      04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
      88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
      04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
      20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
      20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
      01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


      The product of these numbers is 26 × 63 × 78 × 14 = 1788696.



      What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?



      Input

      Input consists of 20 lines each containing 20 integers.



      Output

      Print the required answer.



      Limits

      0 ≤ each integer in the grid ≤ 100



      Sample

      Input



      89 90 95 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 
      49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
      81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
      52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
      22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
      24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
      32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
      67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
      24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
      21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
      78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
      16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
      86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
      19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
      04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
      88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
      04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
      20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
      20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
      01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


      Output



      73812150


      My solution (C++14)



      #include <iostream>
      #include <vector>
      #include <algorithm>
      #include <iterator>
      #include <numeric>

      // 2D grid represented by 1D vector for cache optimization
      auto getGrid(int rows, int columns)
      auto values = rows * columns;
      std::vector<int> grid(values);
      std::copy_n(std::istream_iterator<int>(std::cin), values, grid.begin());
      return grid;


      class LargestProductInAGrid
      public:
      LargestProductInAGrid(std::vector<int> &grid, int rows, int columns, int nAdjacents) : grid_(grid), rows_(rows),
      columns_(columns),
      nAdjacents_(nAdjacents)

      auto largestProductInAGrid()
      long long largestProduct = 0;

      for (auto row = 0; row < rows_; row++)
      largestProduct = std::max(largestProduct, largestProductInARow(row));


      for (auto column = 0; column < columns_; column++)
      largestProduct = std::max(largestProduct, largestProductInAColumn(column));
      largestProduct = std::max(largestProduct, largestProductInARightDiagonal(column));
      largestProduct = std::max(largestProduct, largestProductInALeftDiagonal(column));


      return largestProduct;


      private:
      long long largestProductInARow(int row)
      int low = row * columns_, end = low + columns_;
      long long currentProduct = 0, highestProduct = 0;

      while (low + nAdjacents_ - 1 < end)
      if (currentProduct == 0)
      currentProduct = std::accumulate(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 1LL,
      std::multiplies<>());
      else
      currentProduct /= grid_[low - 1];
      currentProduct *= grid_[low + nAdjacents_ - 1];


      if (currentProduct == 0)
      auto zero = std::find(grid_.begin() + low, grid_.begin() + low + nAdjacents_, 0);
      low += zero - (grid_.begin() + low) + 1;
      else
      low++;


      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      int oneDIndex(int row, int column)
      return row * columns_ + column;


      long long largestProductInAColumn(int column)
      int row = 0;
      long long currentProduct = 0, highestProduct = 0;

      while (row + nAdjacents_ - 1 < rows_)
      if (currentProduct == 0)
      currentProduct = 1;
      for (int i = row; i < row + nAdjacents_; i++)
      currentProduct *= grid_[oneDIndex(i, column)];

      else
      currentProduct /= grid_[oneDIndex(row - 1, column)];
      currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column)];


      if (currentProduct == 0)
      while (grid_[oneDIndex(row, column)] != 0)
      row++;



      row++;

      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      long long largestProductInARightDiagonal(int startingColumn)
      int row = 0, column = startingColumn;
      long long currentProduct = 0, highestProduct = 0;

      while (row + nAdjacents_ - 1 < rows_ && column + nAdjacents_ - 1 < columns_)
      if (currentProduct == 0)
      currentProduct = 1;
      for (int i = row; i < row + nAdjacents_; i++)
      currentProduct *= grid_[oneDIndex(i, column + i)];

      else
      currentProduct /= grid_[oneDIndex(row - 1, column - 1)];
      currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column + nAdjacents_ - 1)];


      if (currentProduct == 0)
      while (grid_[oneDIndex(row, column)] != 0)
      row++, column++;



      row++, column++;

      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      long long largestProductInALeftDiagonal(int startingColumn)
      int row = 0, column = startingColumn;
      long long currentProduct = 0, highestProduct = 0;

      while (row + nAdjacents_ - 1 < rows_ && column - nAdjacents_ + 1 >= 0)
      if (currentProduct == 0)
      currentProduct = 1;
      for (int i = row; i < row + nAdjacents_; i++)
      currentProduct *= grid_[oneDIndex(i, column - i)];

      else
      currentProduct /= grid_[oneDIndex(row - 1, column + 1)];
      currentProduct *= grid_[oneDIndex(row + nAdjacents_ - 1, column - nAdjacents_ + 1)];


      if (currentProduct == 0)
      while (grid_[oneDIndex(row, column)] != 0)
      row++, column--;



      row++, column--;

      highestProduct = std::max(highestProduct, currentProduct);


      return highestProduct;


      std::vector<int> grid_;
      int rows_;
      int columns_;
      int nAdjacents_;
      ;

      int main()
      const int rows = 20, columns = 20, nAdjacents = 4;
      auto grid = getGrid(rows, columns);
      LargestProductInAGrid solution(grid, rows, columns, nAdjacents);
      std::cout << solution.largestProductInAGrid() << std::endl;



      Analysis

      Time complexity: $O(r * c)$

      Space complexity: $O(1)$, not counting initial data



      Comments

      In the past, I solved this problem when I was learning to program using the brute force method. This time, I wanted to optimize it for performance while maintaining a reasonable standard of readability.







      c++ performance object-oriented programming-challenge c++14





      share







      New contributor




      Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share







      New contributor




      Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share



      share






      New contributor




      Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 4 mins ago









      EricEric

      1534




      1534




      New contributor




      Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Eric is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "196"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Eric is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216386%2fproject-euler-11-largest-product-in-a-grid-cache-optimized-sliding-window%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Eric is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Eric is a new contributor. Be nice, and check out our Code of Conduct.












          Eric is a new contributor. Be nice, and check out our Code of Conduct.











          Eric is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216386%2fproject-euler-11-largest-product-in-a-grid-cache-optimized-sliding-window%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

          शेव्रोले वोल्ट अनुक्रम इतिहास इन्हे भी देखें चित्र दीर्घा संदर्भ दिक्चालन सूची

          चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि