calculus parametric curve length The Next CEO of Stack OverflowFind the length of the parametric curve (Difficult)Parametric Curve Tangent EquationsParametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveTransforming quadratic parametric curve to implicit formLength of a parametric curve formula: What does the integral represent?

What connection does MS Office have to Netscape Navigator?

How fast would a person need to move to trick the eye?

Written every which way

Skipping indices in a product

Does it take more energy to get to Venus or to Mars?

Interfacing a button to MCU (and PC) with 50m long cable

Is it possible to search for a directory/file combination?

What is ( CFMCC ) on ILS approach chart?

How to add tiny 0.5A 120V load to very remote split phase 240v 3 wire well house

Why do airplanes bank sharply to the right after air-to-air refueling?

Workaholic Formal/Informal

What happened in Rome, when the western empire "fell"?

A "random" question: usage of "random" as adjective in Spanish

Why has the US not been more assertive in confronting Russia in recent years?

What was the first Unix version to run on a microcomputer?

Unreliable Magic - Is it worth it?

What can we do to stop prior company from asking us questions?

Can you replace a racial trait cantrip when leveling up?

Is it professional to write unrelated content in an almost-empty email?

What exact does MIB represent in SNMP? How is it different from OID?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Rotate a column

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Return the Closest Prime Number



calculus parametric curve length



The Next CEO of Stack OverflowFind the length of the parametric curve (Difficult)Parametric Curve Tangent EquationsParametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveTransforming quadratic parametric curve to implicit formLength of a parametric curve formula: What does the integral represent?










3












$begingroup$


Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    4 hours ago
















3












$begingroup$


Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    4 hours ago














3












3








3





$begingroup$


Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?










share|cite|improve this question











$endgroup$




Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?







calculus parametric






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









Matt A Pelto

2,667621




2,667621










asked 4 hours ago









McAMcA

224




224











  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    4 hours ago

















  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    4 hours ago
















$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago





$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago











3 Answers
3






active

oldest

votes


















2












$begingroup$

Apply the formula for arc length, we get
$$
int_0^2 frac27t^2,sqrtt^3+12 dt
$$

Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrtv dv = 78.
$$






share|cite|improve this answer








New contributor




EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




















    2












    $begingroup$

    beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






    share|cite|improve this answer











    $endgroup$




















      1












      $begingroup$

      You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
      $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        Apply the formula for arc length, we get
        $$
        int_0^2 frac27t^2,sqrtt^3+12 dt
        $$

        Then we make the change of variable $v=t^3+1$ to get
        $$
        int_1^9 frac 9 2 sqrtv dv = 78.
        $$






        share|cite|improve this answer








        New contributor




        EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$

















          2












          $begingroup$

          Apply the formula for arc length, we get
          $$
          int_0^2 frac27t^2,sqrtt^3+12 dt
          $$

          Then we make the change of variable $v=t^3+1$ to get
          $$
          int_1^9 frac 9 2 sqrtv dv = 78.
          $$






          share|cite|improve this answer








          New contributor




          EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$















            2












            2








            2





            $begingroup$

            Apply the formula for arc length, we get
            $$
            int_0^2 frac27t^2,sqrtt^3+12 dt
            $$

            Then we make the change of variable $v=t^3+1$ to get
            $$
            int_1^9 frac 9 2 sqrtv dv = 78.
            $$






            share|cite|improve this answer








            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$



            Apply the formula for arc length, we get
            $$
            int_0^2 frac27t^2,sqrtt^3+12 dt
            $$

            Then we make the change of variable $v=t^3+1$ to get
            $$
            int_1^9 frac 9 2 sqrtv dv = 78.
            $$







            share|cite|improve this answer








            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|cite|improve this answer



            share|cite|improve this answer






            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered 4 hours ago









            EagleToLearnEagleToLearn

            233




            233




            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





















                2












                $begingroup$

                beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






                share|cite|improve this answer











                $endgroup$

















                  2












                  $begingroup$

                  beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                  Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






                  share|cite|improve this answer











                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






                    share|cite|improve this answer











                    $endgroup$



                    beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 3 hours ago

























                    answered 4 hours ago









                    Matt A PeltoMatt A Pelto

                    2,667621




                    2,667621





















                        1












                        $begingroup$

                        You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                        $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                          $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                            $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






                            share|cite|improve this answer









                            $endgroup$



                            You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                            $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 4 hours ago









                            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                            78.2k42867




                            78.2k42867



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

                                शेव्रोले वोल्ट अनुक्रम इतिहास इन्हे भी देखें चित्र दीर्घा संदर्भ दिक्चालन सूची

                                चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि