Shutting down all lamps with minimum number of switch pressesFunction that multiplies all numbers between “a” and “b” with do loopSimplify test for divisibility by all numbers 1…20Find all subsets of a vector that sum up to another vectorRuby-ize for loop - counting all the n-digit numbers that contain the digit 5 anywhereCalculate all cyclic subgroups of a group under multiplication of modulo n (group theory)Optimally allocating a resource with time-varying demand and costFinding the maximum GCD of all pairsOptimizing program to output all numbers summing to 100Generating all unlabeled trees with up to n nodesGenerating all permutations of 1 digit, 2 equal letters and 2 different letters efficiently
Why is "la Gestapo" feminine?
Connection Between Knot Theory and Number Theory
What is the purpose of using a decision tree?
Is there a POSIX way to shutdown a UNIX machine?
Unfrosted light bulb
Why is implicit conversion not ambiguous for non-primitive types?
Friend wants my recommendation but I don't want to give it to him
Turning a hard to access nut?
Asserting that Atheism and Theism are both faith based positions
How do you say "Trust your struggle." in French?
Writing in a Christian voice
What properties make a magic weapon befit a Rogue more than a DEX-based Fighter?
Non-Borel set in arbitrary metric space
Why can't I get pgrep output right to variable on bash script?
Why do Radio Buttons not fill the entire outer circle?
Not hide and seek
Should a narrator ever describe things based on a character's view instead of facts?
How to preserve electronics (computers, ipads, phones) for hundreds of years?
Does capillary rise violate hydrostatic paradox?
What is this high flying aircraft over Pennsylvania?
Make a Bowl of Alphabet Soup
How can I, as DM, avoid the Conga Line of Death occurring when implementing some form of flanking rule?
What is the period/term used describe Giuseppe Arcimboldo's style of painting?
What can I do if I am asked to learn different programming languages very frequently?
Shutting down all lamps with minimum number of switch presses
Function that multiplies all numbers between “a” and “b” with do loopSimplify test for divisibility by all numbers 1…20Find all subsets of a vector that sum up to another vectorRuby-ize for loop - counting all the n-digit numbers that contain the digit 5 anywhereCalculate all cyclic subgroups of a group under multiplication of modulo n (group theory)Optimally allocating a resource with time-varying demand and costFinding the maximum GCD of all pairsOptimizing program to output all numbers summing to 100Generating all unlabeled trees with up to n nodesGenerating all permutations of 1 digit, 2 equal letters and 2 different letters efficiently
$begingroup$
I found an optimization problem. The following is an example case.
I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
them are switched on and some of them are switched off. I also have
been given a positive integer m=7. One every turn I choose one lamp Li
and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
Lj was turned off then now it is turned on and vice versa. Indexes are
modulo n so the lamps L118,L119,L1,L2 are consecutive.
What is the minimum number of turns to shut off all lamps and which
switches one must press, if the initial states of the lamps are (from
L1 to L120)1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
The list of cases is as follows:
B 6 1 101101
--------------------------------------------------------------------------------
C 10 2 1011010110
--------------------------------------------------------------------------------
D 20 1 11111011101010111111
--------------------------------------------------------------------------------
E 30 7 011100001010011011100001010011
--------------------------------------------------------------------------------
F 39 6 110100111111101000011000100110111100010
--------------------------------------------------------------------------------
G 53 9 0101100101111100100011100111101001001010
0010000010110
--------------------------------------------------------------------------------
H 120 7 1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
--------------------------------------------------------------------------------
I 220 27 1110111111101000100110011001100110100000
0010100011000111101100111111000001010000
1010110110011100100010011011010111100011
0101101000010000100110111101001001011010
1101001001110110001100011010111101001100
11010111110101010100
--------------------------------------------------------------------------------
J 500 87 1010001101101001110001101001000101010100
0001111111001101011000000011001111111011
1001110011010111111011010100010011011001
1001101110011011100001000111110101011111
1100111100001100110011101110101100001111
1100010010011010001111000000101110101101
1010100001100011111000111001000101101000
1011111111101111000000011111010001000000
1110011110111101010010011000000100010100
0011101011010011010110011110111000010010
0111100100011010010110001000011100101001
1110111010001001011001111011111011010110
10101101111011101110
--------------------------------------------------------------------------------
K 1002 83 0010100100100101000000110101111111101011
1101000101111110001110000110110110010101
1110110011011101100110111001110110010011
1101111010110011110101100001101010100011
1110001100011111110100011110100111111100
0011001011100110101100001101000001110010
0110100000100100100000011010000010111100
1110001110011110101001100111101101010000
0101010000011010011110101001001001000000
0011000100011011011001111010001101111000
0100001011010011001010111001111100110001
0011111110101101001100111101110000000000
1101100100000011000010010100010101001000
1100001000101001100110010100001000001101
1101000100001010011000101001101000100010
0011010001011101010100011101001101101100
0111110100110011001111000000001001001001
1001111001011111000010110000110010101000
1011001100111101000101000110000111010100
0010011011010111001101011001111000001011
1110101010101101111011111110100001100110
1000101100110011010000110000011011110011
0010000010000000111101101000001111101111
0100111110010101100011101001111101010000
1111100010011001110111111000101000000101
01
--------------------------------------------------------------------------------
L 2107 108 0111110100011000011111101110010101100011
1001111011101001001110111110001100011001
1001010100101011101101001000010111111111
1001101010111011110100100101000101100011
1110100010010010101110100000111100101000
0111101011111100010010110000100110100100
0100110101110010110011110010101101100111
1110010011000110110111010110010100101110
0111111101110000111001111100100010010001
1010110011000101100111111001011110101110
0111010110111110110101000101100100011000
1011000011011110001111100110100010100101
1101111100110011001110010010001010101111
1000001001000110011110010011011101110100
1011111100110010011000010110010110101010
0110101000011011110001010000010001000110
1001110101001001110110111111010011010111
1111011001000110111001000011101101110001
0000011111101000010101011111011011000011
1111000000011100010011011001011000110101
1101011111100001100010110010110011000000
0001001111100101110100100011011010011100
0000001111010101000111011000110110100001
1010110011100110111010111110110000010000
1000101001111001000110000101010000010111
1011100001000110001100010000001011101110
1001111110100010010000011000100101010101
1001001001110110101000001001001100001011
0011011100011111100111001110101101110001
0111010000010011110110011011000011101001
1111011010010000101111000010000001100110
1001011101001000010101001001011111111011
1000111000100001101100101110100011111100
1011001111101111110110101111101111011111
1001111100110101110101111110010010101101
1111111111000100100111100011101110110100
0100011011001010110100101101000000110010
0010010001001110110100011111100011111101
0100110111101101010101010100110110011011
0001111111000100000111011010101011000010
0011011110110110110100011001101111001000
1000000011110011100111100000001010010011
1000011101111100000101010101010010100101
1010001011010100011011001110110010100000
1000111101111000010111111101010110110111
0110001111100011001110000100100101001111
0000111111100010011001010000010110111000
1000110110001000001100110000001011000010
1000101101110000101100100010101111100011
1000010010111101000010000110011010000001
0010001100001000001100110111110100100111
1001100110001000100101011111001011001111
110001011111001101010101001
================================================================================
I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?
Current code:
room = []
input = []
m = []
room.append('I')
input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
m.append(27)
F = GF(2)
L_init = vector(F,input[0])
d = len(L_init)
M = matrix(F,d,d)
for i in range(d):
for j in range(-m[0],m[0]+1 ):
M[i,(i+j) % d] = 1
I = M.solve_right(L_init)
K = M.right_kernel()
best = None
for k in K:
A = (I+k).nonzero_positions()
B= []
if len((I+k).nonzero_positions()) < best or best == None:
S = room[0] + ' '
best = len((I+k).nonzero_positions())
for i in range(len(A)):
S +=str(int(A[i])+1) + ' '
print(S)
print("Optimal:")
Output thus far:
I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165
I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185
python mathematics
New contributor
$endgroup$
add a comment |
$begingroup$
I found an optimization problem. The following is an example case.
I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
them are switched on and some of them are switched off. I also have
been given a positive integer m=7. One every turn I choose one lamp Li
and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
Lj was turned off then now it is turned on and vice versa. Indexes are
modulo n so the lamps L118,L119,L1,L2 are consecutive.
What is the minimum number of turns to shut off all lamps and which
switches one must press, if the initial states of the lamps are (from
L1 to L120)1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
The list of cases is as follows:
B 6 1 101101
--------------------------------------------------------------------------------
C 10 2 1011010110
--------------------------------------------------------------------------------
D 20 1 11111011101010111111
--------------------------------------------------------------------------------
E 30 7 011100001010011011100001010011
--------------------------------------------------------------------------------
F 39 6 110100111111101000011000100110111100010
--------------------------------------------------------------------------------
G 53 9 0101100101111100100011100111101001001010
0010000010110
--------------------------------------------------------------------------------
H 120 7 1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
--------------------------------------------------------------------------------
I 220 27 1110111111101000100110011001100110100000
0010100011000111101100111111000001010000
1010110110011100100010011011010111100011
0101101000010000100110111101001001011010
1101001001110110001100011010111101001100
11010111110101010100
--------------------------------------------------------------------------------
J 500 87 1010001101101001110001101001000101010100
0001111111001101011000000011001111111011
1001110011010111111011010100010011011001
1001101110011011100001000111110101011111
1100111100001100110011101110101100001111
1100010010011010001111000000101110101101
1010100001100011111000111001000101101000
1011111111101111000000011111010001000000
1110011110111101010010011000000100010100
0011101011010011010110011110111000010010
0111100100011010010110001000011100101001
1110111010001001011001111011111011010110
10101101111011101110
--------------------------------------------------------------------------------
K 1002 83 0010100100100101000000110101111111101011
1101000101111110001110000110110110010101
1110110011011101100110111001110110010011
1101111010110011110101100001101010100011
1110001100011111110100011110100111111100
0011001011100110101100001101000001110010
0110100000100100100000011010000010111100
1110001110011110101001100111101101010000
0101010000011010011110101001001001000000
0011000100011011011001111010001101111000
0100001011010011001010111001111100110001
0011111110101101001100111101110000000000
1101100100000011000010010100010101001000
1100001000101001100110010100001000001101
1101000100001010011000101001101000100010
0011010001011101010100011101001101101100
0111110100110011001111000000001001001001
1001111001011111000010110000110010101000
1011001100111101000101000110000111010100
0010011011010111001101011001111000001011
1110101010101101111011111110100001100110
1000101100110011010000110000011011110011
0010000010000000111101101000001111101111
0100111110010101100011101001111101010000
1111100010011001110111111000101000000101
01
--------------------------------------------------------------------------------
L 2107 108 0111110100011000011111101110010101100011
1001111011101001001110111110001100011001
1001010100101011101101001000010111111111
1001101010111011110100100101000101100011
1110100010010010101110100000111100101000
0111101011111100010010110000100110100100
0100110101110010110011110010101101100111
1110010011000110110111010110010100101110
0111111101110000111001111100100010010001
1010110011000101100111111001011110101110
0111010110111110110101000101100100011000
1011000011011110001111100110100010100101
1101111100110011001110010010001010101111
1000001001000110011110010011011101110100
1011111100110010011000010110010110101010
0110101000011011110001010000010001000110
1001110101001001110110111111010011010111
1111011001000110111001000011101101110001
0000011111101000010101011111011011000011
1111000000011100010011011001011000110101
1101011111100001100010110010110011000000
0001001111100101110100100011011010011100
0000001111010101000111011000110110100001
1010110011100110111010111110110000010000
1000101001111001000110000101010000010111
1011100001000110001100010000001011101110
1001111110100010010000011000100101010101
1001001001110110101000001001001100001011
0011011100011111100111001110101101110001
0111010000010011110110011011000011101001
1111011010010000101111000010000001100110
1001011101001000010101001001011111111011
1000111000100001101100101110100011111100
1011001111101111110110101111101111011111
1001111100110101110101111110010010101101
1111111111000100100111100011101110110100
0100011011001010110100101101000000110010
0010010001001110110100011111100011111101
0100110111101101010101010100110110011011
0001111111000100000111011010101011000010
0011011110110110110100011001101111001000
1000000011110011100111100000001010010011
1000011101111100000101010101010010100101
1010001011010100011011001110110010100000
1000111101111000010111111101010110110111
0110001111100011001110000100100101001111
0000111111100010011001010000010110111000
1000110110001000001100110000001011000010
1000101101110000101100100010101111100011
1000010010111101000010000110011010000001
0010001100001000001100110111110100100111
1001100110001000100101011111001011001111
110001011111001101010101001
================================================================================
I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?
Current code:
room = []
input = []
m = []
room.append('I')
input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
m.append(27)
F = GF(2)
L_init = vector(F,input[0])
d = len(L_init)
M = matrix(F,d,d)
for i in range(d):
for j in range(-m[0],m[0]+1 ):
M[i,(i+j) % d] = 1
I = M.solve_right(L_init)
K = M.right_kernel()
best = None
for k in K:
A = (I+k).nonzero_positions()
B= []
if len((I+k).nonzero_positions()) < best or best == None:
S = room[0] + ' '
best = len((I+k).nonzero_positions())
for i in range(len(A)):
S +=str(int(A[i])+1) + ' '
print(S)
print("Optimal:")
Output thus far:
I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165
I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185
python mathematics
New contributor
$endgroup$
add a comment |
$begingroup$
I found an optimization problem. The following is an example case.
I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
them are switched on and some of them are switched off. I also have
been given a positive integer m=7. One every turn I choose one lamp Li
and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
Lj was turned off then now it is turned on and vice versa. Indexes are
modulo n so the lamps L118,L119,L1,L2 are consecutive.
What is the minimum number of turns to shut off all lamps and which
switches one must press, if the initial states of the lamps are (from
L1 to L120)1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
The list of cases is as follows:
B 6 1 101101
--------------------------------------------------------------------------------
C 10 2 1011010110
--------------------------------------------------------------------------------
D 20 1 11111011101010111111
--------------------------------------------------------------------------------
E 30 7 011100001010011011100001010011
--------------------------------------------------------------------------------
F 39 6 110100111111101000011000100110111100010
--------------------------------------------------------------------------------
G 53 9 0101100101111100100011100111101001001010
0010000010110
--------------------------------------------------------------------------------
H 120 7 1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
--------------------------------------------------------------------------------
I 220 27 1110111111101000100110011001100110100000
0010100011000111101100111111000001010000
1010110110011100100010011011010111100011
0101101000010000100110111101001001011010
1101001001110110001100011010111101001100
11010111110101010100
--------------------------------------------------------------------------------
J 500 87 1010001101101001110001101001000101010100
0001111111001101011000000011001111111011
1001110011010111111011010100010011011001
1001101110011011100001000111110101011111
1100111100001100110011101110101100001111
1100010010011010001111000000101110101101
1010100001100011111000111001000101101000
1011111111101111000000011111010001000000
1110011110111101010010011000000100010100
0011101011010011010110011110111000010010
0111100100011010010110001000011100101001
1110111010001001011001111011111011010110
10101101111011101110
--------------------------------------------------------------------------------
K 1002 83 0010100100100101000000110101111111101011
1101000101111110001110000110110110010101
1110110011011101100110111001110110010011
1101111010110011110101100001101010100011
1110001100011111110100011110100111111100
0011001011100110101100001101000001110010
0110100000100100100000011010000010111100
1110001110011110101001100111101101010000
0101010000011010011110101001001001000000
0011000100011011011001111010001101111000
0100001011010011001010111001111100110001
0011111110101101001100111101110000000000
1101100100000011000010010100010101001000
1100001000101001100110010100001000001101
1101000100001010011000101001101000100010
0011010001011101010100011101001101101100
0111110100110011001111000000001001001001
1001111001011111000010110000110010101000
1011001100111101000101000110000111010100
0010011011010111001101011001111000001011
1110101010101101111011111110100001100110
1000101100110011010000110000011011110011
0010000010000000111101101000001111101111
0100111110010101100011101001111101010000
1111100010011001110111111000101000000101
01
--------------------------------------------------------------------------------
L 2107 108 0111110100011000011111101110010101100011
1001111011101001001110111110001100011001
1001010100101011101101001000010111111111
1001101010111011110100100101000101100011
1110100010010010101110100000111100101000
0111101011111100010010110000100110100100
0100110101110010110011110010101101100111
1110010011000110110111010110010100101110
0111111101110000111001111100100010010001
1010110011000101100111111001011110101110
0111010110111110110101000101100100011000
1011000011011110001111100110100010100101
1101111100110011001110010010001010101111
1000001001000110011110010011011101110100
1011111100110010011000010110010110101010
0110101000011011110001010000010001000110
1001110101001001110110111111010011010111
1111011001000110111001000011101101110001
0000011111101000010101011111011011000011
1111000000011100010011011001011000110101
1101011111100001100010110010110011000000
0001001111100101110100100011011010011100
0000001111010101000111011000110110100001
1010110011100110111010111110110000010000
1000101001111001000110000101010000010111
1011100001000110001100010000001011101110
1001111110100010010000011000100101010101
1001001001110110101000001001001100001011
0011011100011111100111001110101101110001
0111010000010011110110011011000011101001
1111011010010000101111000010000001100110
1001011101001000010101001001011111111011
1000111000100001101100101110100011111100
1011001111101111110110101111101111011111
1001111100110101110101111110010010101101
1111111111000100100111100011101110110100
0100011011001010110100101101000000110010
0010010001001110110100011111100011111101
0100110111101101010101010100110110011011
0001111111000100000111011010101011000010
0011011110110110110100011001101111001000
1000000011110011100111100000001010010011
1000011101111100000101010101010010100101
1010001011010100011011001110110010100000
1000111101111000010111111101010110110111
0110001111100011001110000100100101001111
0000111111100010011001010000010110111000
1000110110001000001100110000001011000010
1000101101110000101100100010101111100011
1000010010111101000010000110011010000001
0010001100001000001100110111110100100111
1001100110001000100101011111001011001111
110001011111001101010101001
================================================================================
I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?
Current code:
room = []
input = []
m = []
room.append('I')
input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
m.append(27)
F = GF(2)
L_init = vector(F,input[0])
d = len(L_init)
M = matrix(F,d,d)
for i in range(d):
for j in range(-m[0],m[0]+1 ):
M[i,(i+j) % d] = 1
I = M.solve_right(L_init)
K = M.right_kernel()
best = None
for k in K:
A = (I+k).nonzero_positions()
B= []
if len((I+k).nonzero_positions()) < best or best == None:
S = room[0] + ' '
best = len((I+k).nonzero_positions())
for i in range(len(A)):
S +=str(int(A[i])+1) + ' '
print(S)
print("Optimal:")
Output thus far:
I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165
I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185
python mathematics
New contributor
$endgroup$
I found an optimization problem. The following is an example case.
I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
them are switched on and some of them are switched off. I also have
been given a positive integer m=7. One every turn I choose one lamp Li
and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
Lj was turned off then now it is turned on and vice versa. Indexes are
modulo n so the lamps L118,L119,L1,L2 are consecutive.
What is the minimum number of turns to shut off all lamps and which
switches one must press, if the initial states of the lamps are (from
L1 to L120)1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
The list of cases is as follows:
B 6 1 101101
--------------------------------------------------------------------------------
C 10 2 1011010110
--------------------------------------------------------------------------------
D 20 1 11111011101010111111
--------------------------------------------------------------------------------
E 30 7 011100001010011011100001010011
--------------------------------------------------------------------------------
F 39 6 110100111111101000011000100110111100010
--------------------------------------------------------------------------------
G 53 9 0101100101111100100011100111101001001010
0010000010110
--------------------------------------------------------------------------------
H 120 7 1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
--------------------------------------------------------------------------------
I 220 27 1110111111101000100110011001100110100000
0010100011000111101100111111000001010000
1010110110011100100010011011010111100011
0101101000010000100110111101001001011010
1101001001110110001100011010111101001100
11010111110101010100
--------------------------------------------------------------------------------
J 500 87 1010001101101001110001101001000101010100
0001111111001101011000000011001111111011
1001110011010111111011010100010011011001
1001101110011011100001000111110101011111
1100111100001100110011101110101100001111
1100010010011010001111000000101110101101
1010100001100011111000111001000101101000
1011111111101111000000011111010001000000
1110011110111101010010011000000100010100
0011101011010011010110011110111000010010
0111100100011010010110001000011100101001
1110111010001001011001111011111011010110
10101101111011101110
--------------------------------------------------------------------------------
K 1002 83 0010100100100101000000110101111111101011
1101000101111110001110000110110110010101
1110110011011101100110111001110110010011
1101111010110011110101100001101010100011
1110001100011111110100011110100111111100
0011001011100110101100001101000001110010
0110100000100100100000011010000010111100
1110001110011110101001100111101101010000
0101010000011010011110101001001001000000
0011000100011011011001111010001101111000
0100001011010011001010111001111100110001
0011111110101101001100111101110000000000
1101100100000011000010010100010101001000
1100001000101001100110010100001000001101
1101000100001010011000101001101000100010
0011010001011101010100011101001101101100
0111110100110011001111000000001001001001
1001111001011111000010110000110010101000
1011001100111101000101000110000111010100
0010011011010111001101011001111000001011
1110101010101101111011111110100001100110
1000101100110011010000110000011011110011
0010000010000000111101101000001111101111
0100111110010101100011101001111101010000
1111100010011001110111111000101000000101
01
--------------------------------------------------------------------------------
L 2107 108 0111110100011000011111101110010101100011
1001111011101001001110111110001100011001
1001010100101011101101001000010111111111
1001101010111011110100100101000101100011
1110100010010010101110100000111100101000
0111101011111100010010110000100110100100
0100110101110010110011110010101101100111
1110010011000110110111010110010100101110
0111111101110000111001111100100010010001
1010110011000101100111111001011110101110
0111010110111110110101000101100100011000
1011000011011110001111100110100010100101
1101111100110011001110010010001010101111
1000001001000110011110010011011101110100
1011111100110010011000010110010110101010
0110101000011011110001010000010001000110
1001110101001001110110111111010011010111
1111011001000110111001000011101101110001
0000011111101000010101011111011011000011
1111000000011100010011011001011000110101
1101011111100001100010110010110011000000
0001001111100101110100100011011010011100
0000001111010101000111011000110110100001
1010110011100110111010111110110000010000
1000101001111001000110000101010000010111
1011100001000110001100010000001011101110
1001111110100010010000011000100101010101
1001001001110110101000001001001100001011
0011011100011111100111001110101101110001
0111010000010011110110011011000011101001
1111011010010000101111000010000001100110
1001011101001000010101001001011111111011
1000111000100001101100101110100011111100
1011001111101111110110101111101111011111
1001111100110101110101111110010010101101
1111111111000100100111100011101110110100
0100011011001010110100101101000000110010
0010010001001110110100011111100011111101
0100110111101101010101010100110110011011
0001111111000100000111011010101011000010
0011011110110110110100011001101111001000
1000000011110011100111100000001010010011
1000011101111100000101010101010010100101
1010001011010100011011001110110010100000
1000111101111000010111111101010110110111
0110001111100011001110000100100101001111
0000111111100010011001010000010110111000
1000110110001000001100110000001011000010
1000101101110000101100100010101111100011
1000010010111101000010000110011010000001
0010001100001000001100110111110100100111
1001100110001000100101011111001011001111
110001011111001101010101001
================================================================================
I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?
Current code:
room = []
input = []
m = []
room.append('I')
input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
m.append(27)
F = GF(2)
L_init = vector(F,input[0])
d = len(L_init)
M = matrix(F,d,d)
for i in range(d):
for j in range(-m[0],m[0]+1 ):
M[i,(i+j) % d] = 1
I = M.solve_right(L_init)
K = M.right_kernel()
best = None
for k in K:
A = (I+k).nonzero_positions()
B= []
if len((I+k).nonzero_positions()) < best or best == None:
S = room[0] + ' '
best = len((I+k).nonzero_positions())
for i in range(len(A)):
S +=str(int(A[i])+1) + ' '
print(S)
print("Optimal:")
Output thus far:
I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165
I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185
python mathematics
python mathematics
New contributor
New contributor
edited 1 min ago
sagemathematician
New contributor
asked 12 hours ago
sagemathematiciansagemathematician
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215764%2fshutting-down-all-lamps-with-minimum-number-of-switch-presses%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.
sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.
sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.
sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215764%2fshutting-down-all-lamps-with-minimum-number-of-switch-presses%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown