How to calculate the two limits? The Next CEO of Stack OverflowCompute $lim limits_xtoinfty (fracx-2x+2)^x$limits of the sequence $n/(n+1)$How to calculate $lim_xto1left(frac1+cos(pi x)tan^2(pi x)right)^!x^2$Calculate the limit of integralHow to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_x to infty(x+1)e^-2x$How to calculate $lim_nto infty fracn^nn!^2$?Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$

Airplane gently rocking its wings during whole flight

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Can you teleport closer to a creature you are Frightened of?

Reshaping json / reparing json inside shell script (remove trailing comma)

What was Carter Burke's job for "the company" in Aliens?

It is correct to match light sources with the same color temperature?

Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device

Ising model simulation

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what chip

Is there a difference between "Fahrstuhl" and "Aufzug"?

What does "shotgun unity" refer to here in this sentence?

Asymptote: 3d graph over a disc

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Where do students learn to solve polynomial equations these days?

Lucky Feat: How can "more than one creature spend a luck point to influence the outcome of a roll"?

(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?

How to avoid supervisors with prejudiced views?

What's the commands of Cisco query bgp neighbor table, bgp table and router table?

Do scriptures give a method to recognize a truly self-realized person/jivanmukta?

What CSS properties can the br tag have?

From jafe to El-Guest

Are the names of these months realistic?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Man transported from Alternate World into ours by a Neutrino Detector



How to calculate the two limits?



The Next CEO of Stack OverflowCompute $lim limits_xtoinfty (fracx-2x+2)^x$limits of the sequence $n/(n+1)$How to calculate $lim_xto1left(frac1+cos(pi x)tan^2(pi x)right)^!x^2$Calculate the limit of integralHow to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_x to infty(x+1)e^-2x$How to calculate $lim_nto infty fracn^nn!^2$?Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$










3












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago















3












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago













3












3








3





$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite











$endgroup$





I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?







limits






share|cite















share|cite













share|cite




share|cite








edited 1 hour ago







lanse7pty

















asked 2 hours ago









lanse7ptylanse7pty

1,8411823




1,8411823











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago















$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago




$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    Without L'Hospital
    $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



    Now, by Taylor for large values of $x$
    $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
    $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
    $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
    $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        You can solve the first one using



        • $arctan x + operatornamearccotx = fracpi2$

        • $lim_yto 0(1-y)^1/y = e^-1$

        • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

        begineqnarray* left(frac2pi arctan x right)^x
        & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
        & stackrelx to +inftylongrightarrow & e^-frac2pi
        endeqnarray*



        The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




        • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





        share|cite









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






          share|cite|improve this answer











          $endgroup$

















            2












            $begingroup$

            Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






            share|cite|improve this answer











            $endgroup$















              2












              2








              2





              $begingroup$

              Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






              share|cite|improve this answer











              $endgroup$



              Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 1 hour ago

























              answered 2 hours ago









              Paras KhoslaParas Khosla

              2,736423




              2,736423





















                  1












                  $begingroup$

                  Without L'Hospital
                  $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                  Now, by Taylor for large values of $x$
                  $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                  $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                  $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                  $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                  share|cite|improve this answer









                  $endgroup$

















                    1












                    $begingroup$

                    Without L'Hospital
                    $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                    $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                    $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                    $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                    share|cite|improve this answer









                    $endgroup$















                      1












                      1








                      1





                      $begingroup$

                      Without L'Hospital
                      $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                      $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                      $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                      $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                      share|cite|improve this answer









                      $endgroup$



                      Without L'Hospital
                      $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                      $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                      $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                      $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 1 hour ago









                      Claude LeiboviciClaude Leibovici

                      125k1158136




                      125k1158136





















                          0












                          $begingroup$

                          I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                          share|cite|improve this answer









                          $endgroup$

















                            0












                            $begingroup$

                            I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                            share|cite|improve this answer









                            $endgroup$















                              0












                              0








                              0





                              $begingroup$

                              I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                              share|cite|improve this answer









                              $endgroup$



                              I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 2 hours ago









                              AdmuthAdmuth

                              285




                              285





















                                  0












                                  $begingroup$

                                  You can solve the first one using



                                  • $arctan x + operatornamearccotx = fracpi2$

                                  • $lim_yto 0(1-y)^1/y = e^-1$

                                  • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                  begineqnarray* left(frac2pi arctan x right)^x
                                  & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                  & stackrelx to +inftylongrightarrow & e^-frac2pi
                                  endeqnarray*



                                  The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                  • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





                                  share|cite









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    You can solve the first one using



                                    • $arctan x + operatornamearccotx = fracpi2$

                                    • $lim_yto 0(1-y)^1/y = e^-1$

                                    • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                    begineqnarray* left(frac2pi arctan x right)^x
                                    & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                    & stackrelx to +inftylongrightarrow & e^-frac2pi
                                    endeqnarray*



                                    The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                    • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





                                    share|cite









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      You can solve the first one using



                                      • $arctan x + operatornamearccotx = fracpi2$

                                      • $lim_yto 0(1-y)^1/y = e^-1$

                                      • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                      begineqnarray* left(frac2pi arctan x right)^x
                                      & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                      & stackrelx to +inftylongrightarrow & e^-frac2pi
                                      endeqnarray*



                                      The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                      • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





                                      share|cite









                                      $endgroup$



                                      You can solve the first one using



                                      • $arctan x + operatornamearccotx = fracpi2$

                                      • $lim_yto 0(1-y)^1/y = e^-1$

                                      • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                      begineqnarray* left(frac2pi arctan x right)^x
                                      & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                      & stackrelx to +inftylongrightarrow & e^-frac2pi
                                      endeqnarray*



                                      The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                      • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.






                                      share|cite












                                      share|cite



                                      share|cite










                                      answered 9 mins ago









                                      trancelocationtrancelocation

                                      13.4k1827




                                      13.4k1827



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

                                          शेव्रोले वोल्ट अनुक्रम इतिहास इन्हे भी देखें चित्र दीर्घा संदर्भ दिक्चालन सूची

                                          चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि