ValueError: setting an array element with a sequence Tensorflow and numpyElement-comparison NumPy matrixFind binary sequence in NumPy binary arrayNumPy array filter optimisationSlicing a big NumPy arraySimple Stateful LSTM example with arbitrary sequence lengthTraining MLP classifier with TensorFlow on notMNIST datasetVectorizing a sequence $x_i+1 = f(x_i)$ with NumPyExtending numpy array by replacing each element with a matrixFor-Loop with numpy array too slowSpearman correlations between Numpy array and every Pandas DataFrame row
Logistic function with a slope but no asymptotes?
Why does a 97 / 92 key piano exist by Bösendorfer?
Echo with obfuscation
How to preserve electronics (computers, iPads and phones) for hundreds of years
How to get directions in deep space?
Visualizing the difference curve in a 2D plot?
How to leave product feedback on macOS?
Using streams for a null-safe conversion from an array to list
Given this phrasing in the lease, when should I pay my rent?
Why would five hundred and five be same as one?
The Digit Triangles
Quoting Keynes in a lecture
What is the meaning of "You've never met a graph you didn't like?"
How to reduce predictors the right way for a logistic regression model
Why can't the Brexit deadlock in the UK parliament be solved with a plurality vote?
Is there anyway, I can have two passwords for my wi-fi
In One Punch Man, is King actually weak?
How many people need to be born every 8 years to sustain population?
PTIJ: Which Dr. Seuss books should one obtain?
Limit max CPU usage SQL SERVER with WSRM
Pre-Employment Background Check With Consent For Future Checks
How do I fix the group tension caused by my character stealing and possibly killing without provocation?
How much do grades matter for a future academia position?
Is there a reason to prefer HFS+ over APFS for disk images in High Sierra and/or Mojave?
ValueError: setting an array element with a sequence Tensorflow and numpy
Element-comparison NumPy matrixFind binary sequence in NumPy binary arrayNumPy array filter optimisationSlicing a big NumPy arraySimple Stateful LSTM example with arbitrary sequence lengthTraining MLP classifier with TensorFlow on notMNIST datasetVectorizing a sequence $x_i+1 = f(x_i)$ with NumPyExtending numpy array by replacing each element with a matrixFor-Loop with numpy array too slowSpearman correlations between Numpy array and every Pandas DataFrame row
$begingroup$
Trying to run this code, which is a function I wrote myself:
def next_batch(batch_size):
label = [0, 1, 0, 0, 0]
X = []
Y = []
for i in range(0, batch_size):
rand = random.choice(os.listdir(mnist))
rand = mnist + rand
img = cv2.imread(str(rand), 0)
img = np.array(img)
img = img.ravel()
X.append(img)
Y.append(label)
X = np.array(X)
Y = np.array(Y)
return X, Y
Then I want to use the X and Y array for training purpose of my network.
I run it with this code: (Mainly the bottom part of def train(train_model) is where it all goes down
def train(train_model=True):
"""
Used to train the autoencoder by passing in the necessary inputs.
:param train_model: True -> Train the model, False -> Load the latest trained model and show the image grid.
:return: does not return anything
"""
with tf.variable_scope(tf.get_variable_scope()):
encoder_output = encoder(x_input)
# Concat class label and the encoder output
decoder_input = tf.concat([y_input, encoder_output], 1)
decoder_output = decoder(decoder_input)
with tf.variable_scope(tf.get_variable_scope()):
d_real = discriminator(real_distribution)
d_fake = discriminator(encoder_output, reuse=True)
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(manual_decoder_input, reuse=True)
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Discriminator Loss
dc_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_real), logits=d_real))
dc_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake))
dc_loss = dc_loss_fake + dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake))
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
# Optimizers
autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(autoencoder_loss)
discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_loss, var_list=dc_var)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(generator_loss, var_list=en_var)
init = tf.global_variables_initializer()
# Reshape images to display them
input_images = tf.reshape(x_input, [-1, 368, 432, 1])
generated_images = tf.reshape(decoder_output, [-1, 368, 432, 1])
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator Loss', tensor=dc_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.histogram(name='Encoder Distribution', values=encoder_output)
tf.summary.histogram(name='Real Distribution', values=real_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
sess.run(init)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
for i in range(n_epochs):
# print(n_epochs)
n_batches = int(10000 / batch_size)
print("------------------Epoch /------------------".format(i, n_epochs))
for b in range(1, n_batches+1):
# print("In the loop")
z_real_dist = np.random.randn(batch_size, z_dim) * 5.
batch_x, batch_y = next_batch(batch_size)
# print("Created the batches")
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
print("batch_x", batch_x)
print("x_input:", x_input)
print("x_target:", x_target)
print("y_input:", y_input)
sess.run(discriminator_optimizer,
feed_dict=x_input: batch_x, x_target: batch_x, real_distribution: z_real_dist)
sess.run(generator_optimizer, feed_dict=x_input: batch_x, x_target: batch_x)
# print("setup the session")
if b % 50 == 0:
a_loss, d_loss, g_loss, summary = sess.run(
[autoencoder_loss, dc_loss, generator_loss, summary_op],
feed_dict=x_input: batch_x, x_target: batch_x,
real_distribution: z_real_dist, y_input: batch_y)
writer.add_summary(summary, global_step=step)
print("Epoch: , iteration: ".format(i, b))
print("Autoencoder Loss: ".format(a_loss))
print("Discriminator Loss: ".format(d_loss))
print("Generator Loss: ".format(g_loss))
with open(log_path + '/log.txt', 'a') as log:
log.write("Epoch: , iteration: n".format(i, b))
log.write("Autoencoder Loss: n".format(a_loss))
log.write("Discriminator Loss: n".format(d_loss))
log.write("Generator Loss: n".format(g_loss))
step += 1
saver.save(sess, save_path=saved_model_path, global_step=step)
else:
# Get the latest results folder
all_results = os.listdir(results_path)
all_results.sort()
saver.restore(sess, save_path=tf.train.latest_checkpoint(results_path + '/' +
all_results[-1] + '/Saved_models/'))
generate_image_grid(sess, op=decoder_image)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Autoencoder Train Parameter")
parser.add_argument('--train', '-t', type=bool, default=True,
help='Set to True to train a new model, False to load weights and display image grid')
args = parser.parse_args()
train(train_model=args.train)
Getting this error message:
Traceback (most recent call last):
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 290, in
train(train_model=args.train)
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 249, in train
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 1121, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/numpy/core/numeric.py", line 538, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.
Process finished with exit code 1
I really don't get this error. Can somebody help me out with this?
python python-3.x numpy neural-network tensorflow
New contributor
$endgroup$
add a comment |
$begingroup$
Trying to run this code, which is a function I wrote myself:
def next_batch(batch_size):
label = [0, 1, 0, 0, 0]
X = []
Y = []
for i in range(0, batch_size):
rand = random.choice(os.listdir(mnist))
rand = mnist + rand
img = cv2.imread(str(rand), 0)
img = np.array(img)
img = img.ravel()
X.append(img)
Y.append(label)
X = np.array(X)
Y = np.array(Y)
return X, Y
Then I want to use the X and Y array for training purpose of my network.
I run it with this code: (Mainly the bottom part of def train(train_model) is where it all goes down
def train(train_model=True):
"""
Used to train the autoencoder by passing in the necessary inputs.
:param train_model: True -> Train the model, False -> Load the latest trained model and show the image grid.
:return: does not return anything
"""
with tf.variable_scope(tf.get_variable_scope()):
encoder_output = encoder(x_input)
# Concat class label and the encoder output
decoder_input = tf.concat([y_input, encoder_output], 1)
decoder_output = decoder(decoder_input)
with tf.variable_scope(tf.get_variable_scope()):
d_real = discriminator(real_distribution)
d_fake = discriminator(encoder_output, reuse=True)
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(manual_decoder_input, reuse=True)
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Discriminator Loss
dc_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_real), logits=d_real))
dc_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake))
dc_loss = dc_loss_fake + dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake))
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
# Optimizers
autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(autoencoder_loss)
discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_loss, var_list=dc_var)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(generator_loss, var_list=en_var)
init = tf.global_variables_initializer()
# Reshape images to display them
input_images = tf.reshape(x_input, [-1, 368, 432, 1])
generated_images = tf.reshape(decoder_output, [-1, 368, 432, 1])
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator Loss', tensor=dc_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.histogram(name='Encoder Distribution', values=encoder_output)
tf.summary.histogram(name='Real Distribution', values=real_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
sess.run(init)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
for i in range(n_epochs):
# print(n_epochs)
n_batches = int(10000 / batch_size)
print("------------------Epoch /------------------".format(i, n_epochs))
for b in range(1, n_batches+1):
# print("In the loop")
z_real_dist = np.random.randn(batch_size, z_dim) * 5.
batch_x, batch_y = next_batch(batch_size)
# print("Created the batches")
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
print("batch_x", batch_x)
print("x_input:", x_input)
print("x_target:", x_target)
print("y_input:", y_input)
sess.run(discriminator_optimizer,
feed_dict=x_input: batch_x, x_target: batch_x, real_distribution: z_real_dist)
sess.run(generator_optimizer, feed_dict=x_input: batch_x, x_target: batch_x)
# print("setup the session")
if b % 50 == 0:
a_loss, d_loss, g_loss, summary = sess.run(
[autoencoder_loss, dc_loss, generator_loss, summary_op],
feed_dict=x_input: batch_x, x_target: batch_x,
real_distribution: z_real_dist, y_input: batch_y)
writer.add_summary(summary, global_step=step)
print("Epoch: , iteration: ".format(i, b))
print("Autoencoder Loss: ".format(a_loss))
print("Discriminator Loss: ".format(d_loss))
print("Generator Loss: ".format(g_loss))
with open(log_path + '/log.txt', 'a') as log:
log.write("Epoch: , iteration: n".format(i, b))
log.write("Autoencoder Loss: n".format(a_loss))
log.write("Discriminator Loss: n".format(d_loss))
log.write("Generator Loss: n".format(g_loss))
step += 1
saver.save(sess, save_path=saved_model_path, global_step=step)
else:
# Get the latest results folder
all_results = os.listdir(results_path)
all_results.sort()
saver.restore(sess, save_path=tf.train.latest_checkpoint(results_path + '/' +
all_results[-1] + '/Saved_models/'))
generate_image_grid(sess, op=decoder_image)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Autoencoder Train Parameter")
parser.add_argument('--train', '-t', type=bool, default=True,
help='Set to True to train a new model, False to load weights and display image grid')
args = parser.parse_args()
train(train_model=args.train)
Getting this error message:
Traceback (most recent call last):
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 290, in
train(train_model=args.train)
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 249, in train
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 1121, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/numpy/core/numeric.py", line 538, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.
Process finished with exit code 1
I really don't get this error. Can somebody help me out with this?
python python-3.x numpy neural-network tensorflow
New contributor
$endgroup$
add a comment |
$begingroup$
Trying to run this code, which is a function I wrote myself:
def next_batch(batch_size):
label = [0, 1, 0, 0, 0]
X = []
Y = []
for i in range(0, batch_size):
rand = random.choice(os.listdir(mnist))
rand = mnist + rand
img = cv2.imread(str(rand), 0)
img = np.array(img)
img = img.ravel()
X.append(img)
Y.append(label)
X = np.array(X)
Y = np.array(Y)
return X, Y
Then I want to use the X and Y array for training purpose of my network.
I run it with this code: (Mainly the bottom part of def train(train_model) is where it all goes down
def train(train_model=True):
"""
Used to train the autoencoder by passing in the necessary inputs.
:param train_model: True -> Train the model, False -> Load the latest trained model and show the image grid.
:return: does not return anything
"""
with tf.variable_scope(tf.get_variable_scope()):
encoder_output = encoder(x_input)
# Concat class label and the encoder output
decoder_input = tf.concat([y_input, encoder_output], 1)
decoder_output = decoder(decoder_input)
with tf.variable_scope(tf.get_variable_scope()):
d_real = discriminator(real_distribution)
d_fake = discriminator(encoder_output, reuse=True)
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(manual_decoder_input, reuse=True)
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Discriminator Loss
dc_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_real), logits=d_real))
dc_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake))
dc_loss = dc_loss_fake + dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake))
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
# Optimizers
autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(autoencoder_loss)
discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_loss, var_list=dc_var)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(generator_loss, var_list=en_var)
init = tf.global_variables_initializer()
# Reshape images to display them
input_images = tf.reshape(x_input, [-1, 368, 432, 1])
generated_images = tf.reshape(decoder_output, [-1, 368, 432, 1])
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator Loss', tensor=dc_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.histogram(name='Encoder Distribution', values=encoder_output)
tf.summary.histogram(name='Real Distribution', values=real_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
sess.run(init)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
for i in range(n_epochs):
# print(n_epochs)
n_batches = int(10000 / batch_size)
print("------------------Epoch /------------------".format(i, n_epochs))
for b in range(1, n_batches+1):
# print("In the loop")
z_real_dist = np.random.randn(batch_size, z_dim) * 5.
batch_x, batch_y = next_batch(batch_size)
# print("Created the batches")
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
print("batch_x", batch_x)
print("x_input:", x_input)
print("x_target:", x_target)
print("y_input:", y_input)
sess.run(discriminator_optimizer,
feed_dict=x_input: batch_x, x_target: batch_x, real_distribution: z_real_dist)
sess.run(generator_optimizer, feed_dict=x_input: batch_x, x_target: batch_x)
# print("setup the session")
if b % 50 == 0:
a_loss, d_loss, g_loss, summary = sess.run(
[autoencoder_loss, dc_loss, generator_loss, summary_op],
feed_dict=x_input: batch_x, x_target: batch_x,
real_distribution: z_real_dist, y_input: batch_y)
writer.add_summary(summary, global_step=step)
print("Epoch: , iteration: ".format(i, b))
print("Autoencoder Loss: ".format(a_loss))
print("Discriminator Loss: ".format(d_loss))
print("Generator Loss: ".format(g_loss))
with open(log_path + '/log.txt', 'a') as log:
log.write("Epoch: , iteration: n".format(i, b))
log.write("Autoencoder Loss: n".format(a_loss))
log.write("Discriminator Loss: n".format(d_loss))
log.write("Generator Loss: n".format(g_loss))
step += 1
saver.save(sess, save_path=saved_model_path, global_step=step)
else:
# Get the latest results folder
all_results = os.listdir(results_path)
all_results.sort()
saver.restore(sess, save_path=tf.train.latest_checkpoint(results_path + '/' +
all_results[-1] + '/Saved_models/'))
generate_image_grid(sess, op=decoder_image)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Autoencoder Train Parameter")
parser.add_argument('--train', '-t', type=bool, default=True,
help='Set to True to train a new model, False to load weights and display image grid')
args = parser.parse_args()
train(train_model=args.train)
Getting this error message:
Traceback (most recent call last):
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 290, in
train(train_model=args.train)
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 249, in train
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 1121, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/numpy/core/numeric.py", line 538, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.
Process finished with exit code 1
I really don't get this error. Can somebody help me out with this?
python python-3.x numpy neural-network tensorflow
New contributor
$endgroup$
Trying to run this code, which is a function I wrote myself:
def next_batch(batch_size):
label = [0, 1, 0, 0, 0]
X = []
Y = []
for i in range(0, batch_size):
rand = random.choice(os.listdir(mnist))
rand = mnist + rand
img = cv2.imread(str(rand), 0)
img = np.array(img)
img = img.ravel()
X.append(img)
Y.append(label)
X = np.array(X)
Y = np.array(Y)
return X, Y
Then I want to use the X and Y array for training purpose of my network.
I run it with this code: (Mainly the bottom part of def train(train_model) is where it all goes down
def train(train_model=True):
"""
Used to train the autoencoder by passing in the necessary inputs.
:param train_model: True -> Train the model, False -> Load the latest trained model and show the image grid.
:return: does not return anything
"""
with tf.variable_scope(tf.get_variable_scope()):
encoder_output = encoder(x_input)
# Concat class label and the encoder output
decoder_input = tf.concat([y_input, encoder_output], 1)
decoder_output = decoder(decoder_input)
with tf.variable_scope(tf.get_variable_scope()):
d_real = discriminator(real_distribution)
d_fake = discriminator(encoder_output, reuse=True)
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(manual_decoder_input, reuse=True)
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Discriminator Loss
dc_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_real), logits=d_real))
dc_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake))
dc_loss = dc_loss_fake + dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake))
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
# Optimizers
autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(autoencoder_loss)
discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_loss, var_list=dc_var)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(generator_loss, var_list=en_var)
init = tf.global_variables_initializer()
# Reshape images to display them
input_images = tf.reshape(x_input, [-1, 368, 432, 1])
generated_images = tf.reshape(decoder_output, [-1, 368, 432, 1])
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator Loss', tensor=dc_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.histogram(name='Encoder Distribution', values=encoder_output)
tf.summary.histogram(name='Real Distribution', values=real_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
sess.run(init)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
for i in range(n_epochs):
# print(n_epochs)
n_batches = int(10000 / batch_size)
print("------------------Epoch /------------------".format(i, n_epochs))
for b in range(1, n_batches+1):
# print("In the loop")
z_real_dist = np.random.randn(batch_size, z_dim) * 5.
batch_x, batch_y = next_batch(batch_size)
# print("Created the batches")
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
print("batch_x", batch_x)
print("x_input:", x_input)
print("x_target:", x_target)
print("y_input:", y_input)
sess.run(discriminator_optimizer,
feed_dict=x_input: batch_x, x_target: batch_x, real_distribution: z_real_dist)
sess.run(generator_optimizer, feed_dict=x_input: batch_x, x_target: batch_x)
# print("setup the session")
if b % 50 == 0:
a_loss, d_loss, g_loss, summary = sess.run(
[autoencoder_loss, dc_loss, generator_loss, summary_op],
feed_dict=x_input: batch_x, x_target: batch_x,
real_distribution: z_real_dist, y_input: batch_y)
writer.add_summary(summary, global_step=step)
print("Epoch: , iteration: ".format(i, b))
print("Autoencoder Loss: ".format(a_loss))
print("Discriminator Loss: ".format(d_loss))
print("Generator Loss: ".format(g_loss))
with open(log_path + '/log.txt', 'a') as log:
log.write("Epoch: , iteration: n".format(i, b))
log.write("Autoencoder Loss: n".format(a_loss))
log.write("Discriminator Loss: n".format(d_loss))
log.write("Generator Loss: n".format(g_loss))
step += 1
saver.save(sess, save_path=saved_model_path, global_step=step)
else:
# Get the latest results folder
all_results = os.listdir(results_path)
all_results.sort()
saver.restore(sess, save_path=tf.train.latest_checkpoint(results_path + '/' +
all_results[-1] + '/Saved_models/'))
generate_image_grid(sess, op=decoder_image)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Autoencoder Train Parameter")
parser.add_argument('--train', '-t', type=bool, default=True,
help='Set to True to train a new model, False to load weights and display image grid')
args = parser.parse_args()
train(train_model=args.train)
Getting this error message:
Traceback (most recent call last):
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 290, in
train(train_model=args.train)
File "/Users/frederikcalsius/Desktop/adv/supervised_adversarial_autoencoder.py", line 249, in train
sess.run(autoencoder_optimizer, feed_dict=x_input: batch_x, x_target: batch_x, y_input: batch_y)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/tensorflow/python/client/session.py", line 1121, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "/Users/frederikcalsius/Library/Python/3.7/lib/python/site-packages/numpy/core/numeric.py", line 538, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.
Process finished with exit code 1
I really don't get this error. Can somebody help me out with this?
python python-3.x numpy neural-network tensorflow
python python-3.x numpy neural-network tensorflow
New contributor
New contributor
New contributor
asked 5 mins ago
FreddyGumpFreddyGump
11
11
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
FreddyGump is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215906%2fvalueerror-setting-an-array-element-with-a-sequence-tensorflow-and-numpy%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
FreddyGump is a new contributor. Be nice, and check out our Code of Conduct.
FreddyGump is a new contributor. Be nice, and check out our Code of Conduct.
FreddyGump is a new contributor. Be nice, and check out our Code of Conduct.
FreddyGump is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215906%2fvalueerror-setting-an-array-element-with-a-sequence-tensorflow-and-numpy%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown