Is a bound state a stationary state?It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?

Is it better practice to read straight from sheet music rather than memorize it?

What should you do if you miss a job interview (deliberately)?

How to explain what's wrong with this application of the chain rule?

Multiplicative persistence

Freedom of speech and where it applies

I am looking for the correct translation of love for the phrase "in this sign love"

A social experiment. What is the worst that can happen?

Is there a working SACD iso player for Ubuntu?

What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?

Not using 's' for he/she/it

Why should universal income be universal?

Should I outline or discovery write my stories?

How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?

Creature in Shazam mid-credits scene?

What does chmod -u do?

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

Is it possible to have a strip of cold climate in the middle of a planet?

Why did the HMS Bounty go back to a time when whales are already rare?

Should I stop contributing to retirement accounts?

Can I sign legal documents with a smiley face?

Can someone explain how this makes sense electrically?

What was this official D&D 3.5e Lovecraft-flavored rulebook?

Why did the EU agree to delay the Brexit deadline?

What if a revenant (monster) gains fire resistance?



Is a bound state a stationary state?


It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?













2












$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago















2












$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago













2












2








2





$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$




In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?







quantum-mechanics hilbert-space terminology definition quantum-states






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Qmechanic

106k121961226




106k121961226










asked 3 hours ago









J-JJ-J

586




586







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago












  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago







2




2




$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago




$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




Let us now ... discuss the fact that the lowest energy is not zero...




(emphasis added by me), and the following paragraph ends with




The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



    Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




    Let us now ... discuss the fact that the lowest energy is not zero...




    (emphasis added by me), and the following paragraph ends with




    The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




    So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




    Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




    Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



      Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




      Let us now ... discuss the fact that the lowest energy is not zero...




      (emphasis added by me), and the following paragraph ends with




      The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




      So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




      Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




      Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



        Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




        Let us now ... discuss the fact that the lowest energy is not zero...




        (emphasis added by me), and the following paragraph ends with




        The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




        So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




        Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




        Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






        share|cite|improve this answer









        $endgroup$



        I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



        Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




        Let us now ... discuss the fact that the lowest energy is not zero...




        (emphasis added by me), and the following paragraph ends with




        The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




        So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




        Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




        Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        Chiral AnomalyChiral Anomaly

        12.4k21541




        12.4k21541



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

            Why is a white electrical wire connected to 2 black wires?How to wire a light fixture with 3 white wires in box?How should I wire a ceiling fan when there's only three wires in the box?Two white, two black, two ground, and red wire in ceiling box connected to switchWhy is there a white wire connected to multiple black wires in my light box?How to wire a light with two white wires and one black wireReplace light switch connected to a power outlet with dimmer - two black wires to one black and redHow to wire a light with multiple black/white/green wires from the ceiling?Ceiling box has 2 black and white wires but fan/ light only has 1 of eachWhy neutral wire connected to load wire?Switch with 2 black, 2 white, 2 ground and 1 red wire connected to ceiling light and a receptacle?

            चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि