Picking the different solutions to the time independent Schrodinger eqautionSolving the time independent Schrodinger equation: Does a complex solution make sense?Change of variable in harmonic oscillator time independent Schrodinger equationQuantum mechanics in electric fieldConstructing solutions to the time-dependent Schrödinger's equationProtocol for solving time independent Schrodinger equationScaling the Time Independent Schrodinger EquationMomentum in time independent schrodinger equationOn Griffith Quantum example 2.1: normalization of wave function in time.How are the symmetry(ies) of the Hamiltonian reflected on the general solutions of the time-dependent Schrodinger equation?1D Time independent Schrodinger eq. with limit

Is there a way to get `mathscr' with lower case letters in pdfLaTeX?

Why should universal income be universal?

Does the Linux kernel need a file system to run?

How do I delete all blank lines in a buffer?

Angel of Condemnation - Exile creature with second ability

Non-trope happy ending?

Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?

Lowest total scrabble score

The IT department bottlenecks progress. How should I handle this?

Has any country ever had 2 former presidents in jail simultaneously?

Calculate sum of polynomial roots

Can disgust be a key component of horror?

When were female captains banned from Starfleet?

Is there an injective, monotonically increasing, strictly concave function from the reals, to the reals?

How could a planet have erratic days?

How to explain what's wrong with this application of the chain rule?

Do the primes contain an infinite almost arithmetic progression?

Creepy dinosaur pc game identification

Why is the "ls" command showing permissions of files in a FAT32 partition?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Is there a RAID 0 Equivalent for RAM?

Why is this estimator biased?

How to hide some fields of struct in C?

Limits and Infinite Integration by Parts



Picking the different solutions to the time independent Schrodinger eqaution


Solving the time independent Schrodinger equation: Does a complex solution make sense?Change of variable in harmonic oscillator time independent Schrodinger equationQuantum mechanics in electric fieldConstructing solutions to the time-dependent Schrödinger's equationProtocol for solving time independent Schrodinger equationScaling the Time Independent Schrodinger EquationMomentum in time independent schrodinger equationOn Griffith Quantum example 2.1: normalization of wave function in time.How are the symmetry(ies) of the Hamiltonian reflected on the general solutions of the time-dependent Schrodinger equation?1D Time independent Schrodinger eq. with limit













1












$begingroup$


The time independent Schrodinger equation
$$-frachbar^22m fracd^2psidx^2+Vpsi = Epsi$$ can have many different solutions of $psi$ for a particular value of $E$.



For example, if we found a complex solution $psi(x)$ for a particular value of $E$, say $E_0$, we can write $psi(x)=a(x)+ib(x)$. Then $a(x)$ and $b(x)$ will also be solutions to the T.I.S.E with $E=E_0$. Furthermore $c_1a(x)+c_2b(x)$ will also be solutions with $c_1$ and $c_2$ being arbitrary constants.



I read that one can always choose any of these solutions as the solution for the stationary state with energy $E_0$. But does that mean all these different solutions represent the same physical state of a particle?



The expectation value of any dynamical variable $Q(x,p)$ is given by
$int psi^*Q(x,frachbarifracddx)psi. $ How do we know for sure that $int a(x)^*Q(x,frachbarifracddx)a(x) $ and $int b(x)^*Q(x,frachbarifracddx)b(x)$ gives the same expectation values?










share|cite|improve this question









$endgroup$











  • $begingroup$
    The last two integrals don't seem to have an infinitesimal?
    $endgroup$
    – Gert
    55 mins ago















1












$begingroup$


The time independent Schrodinger equation
$$-frachbar^22m fracd^2psidx^2+Vpsi = Epsi$$ can have many different solutions of $psi$ for a particular value of $E$.



For example, if we found a complex solution $psi(x)$ for a particular value of $E$, say $E_0$, we can write $psi(x)=a(x)+ib(x)$. Then $a(x)$ and $b(x)$ will also be solutions to the T.I.S.E with $E=E_0$. Furthermore $c_1a(x)+c_2b(x)$ will also be solutions with $c_1$ and $c_2$ being arbitrary constants.



I read that one can always choose any of these solutions as the solution for the stationary state with energy $E_0$. But does that mean all these different solutions represent the same physical state of a particle?



The expectation value of any dynamical variable $Q(x,p)$ is given by
$int psi^*Q(x,frachbarifracddx)psi. $ How do we know for sure that $int a(x)^*Q(x,frachbarifracddx)a(x) $ and $int b(x)^*Q(x,frachbarifracddx)b(x)$ gives the same expectation values?










share|cite|improve this question









$endgroup$











  • $begingroup$
    The last two integrals don't seem to have an infinitesimal?
    $endgroup$
    – Gert
    55 mins ago













1












1








1





$begingroup$


The time independent Schrodinger equation
$$-frachbar^22m fracd^2psidx^2+Vpsi = Epsi$$ can have many different solutions of $psi$ for a particular value of $E$.



For example, if we found a complex solution $psi(x)$ for a particular value of $E$, say $E_0$, we can write $psi(x)=a(x)+ib(x)$. Then $a(x)$ and $b(x)$ will also be solutions to the T.I.S.E with $E=E_0$. Furthermore $c_1a(x)+c_2b(x)$ will also be solutions with $c_1$ and $c_2$ being arbitrary constants.



I read that one can always choose any of these solutions as the solution for the stationary state with energy $E_0$. But does that mean all these different solutions represent the same physical state of a particle?



The expectation value of any dynamical variable $Q(x,p)$ is given by
$int psi^*Q(x,frachbarifracddx)psi. $ How do we know for sure that $int a(x)^*Q(x,frachbarifracddx)a(x) $ and $int b(x)^*Q(x,frachbarifracddx)b(x)$ gives the same expectation values?










share|cite|improve this question









$endgroup$




The time independent Schrodinger equation
$$-frachbar^22m fracd^2psidx^2+Vpsi = Epsi$$ can have many different solutions of $psi$ for a particular value of $E$.



For example, if we found a complex solution $psi(x)$ for a particular value of $E$, say $E_0$, we can write $psi(x)=a(x)+ib(x)$. Then $a(x)$ and $b(x)$ will also be solutions to the T.I.S.E with $E=E_0$. Furthermore $c_1a(x)+c_2b(x)$ will also be solutions with $c_1$ and $c_2$ being arbitrary constants.



I read that one can always choose any of these solutions as the solution for the stationary state with energy $E_0$. But does that mean all these different solutions represent the same physical state of a particle?



The expectation value of any dynamical variable $Q(x,p)$ is given by
$int psi^*Q(x,frachbarifracddx)psi. $ How do we know for sure that $int a(x)^*Q(x,frachbarifracddx)a(x) $ and $int b(x)^*Q(x,frachbarifracddx)b(x)$ gives the same expectation values?







quantum-mechanics schroedinger-equation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









TaeNyFanTaeNyFan

62414




62414











  • $begingroup$
    The last two integrals don't seem to have an infinitesimal?
    $endgroup$
    – Gert
    55 mins ago
















  • $begingroup$
    The last two integrals don't seem to have an infinitesimal?
    $endgroup$
    – Gert
    55 mins ago















$begingroup$
The last two integrals don't seem to have an infinitesimal?
$endgroup$
– Gert
55 mins ago




$begingroup$
The last two integrals don't seem to have an infinitesimal?
$endgroup$
– Gert
55 mins ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

Solutions can be degenerate with the same expectation value of the energy, but they can have different expectation values for other operators like angular momentum or it $z$ component.



For example the hydrogenic wave functions with $n=2$: $2s$ and $2p$. And then there are three different $2p$ wave functions that can be written as linear combinations of $2p_x, 2p_y, 2p_z$ or of the spherical harmonics $Y_ell,m$ with $ell=1$ and $m=-1,0,1$.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$


    ... one can always choose any of these solutions as the solution for the stationary state with energy $E_0$.




    That statement is misleading because of how it uses the word "the," suggesting uniqueness. If both occurrances of "the" were replaced by "a," then the statement would make sense.



    A given observable will typically have different expectation values in two different states with the same energy. For example, when $V=0$, the functions $exp(pm ipx/hbar)$ both have energy $E=p^2/2m$, but they have different eigenvalues ($pm p$) of the momentum operator $P=-ihbarpartial/partial x$.



    (I'm being relaxed here about using words like "eigenstate" for non-normalizable functions, but I think those mathematical technicalities are beside the point of this question.)






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      1. In ordinary quantum mechanics, two wavefunctions represent the same physical state if and only if they are multiples of each other, that is $psi$ and $cpsi$ represent the same state for any $cinmathbbC$. If you insist on wavefunctions being normalized, then $c$ is restricted to complex numbers of absolute value 1, i.e. number of the form $mathrme^mathrmik$ for some $kin[0,2pi)$.



      2. If $psi(x) = a(x) + mathrmib(x)$ is a solution of the Schrödinger equation, then it is not automatically true that $a(x)$ and $b(x)$ are also solutions. It is "accidentally" true for the time-independent Schrödinger equation because applying complex conjugation shows us directly that $psi^ast(x)$ is a solution if $psi(x)$ is, and $a(x)$ and $b(x)$ can be obtained by linear combinations of $psi(x)$ and $psi^ast(x)$.



        There are now two cases: If $psi$ and $psi^ast$ are not linearly independent - i.e. one can be obtained from the other by multiplication with a complex constant - then the space of solutions for this energy is still one-dimensional, and there's only a single physical state. If they are linearly independent, then there are at least two distinct physical states with this energy.



        Note that already the free particle with $V=0$ gives a counter-example to the claim that all solutions for the same energy have the same values for all expectation values. There we have plane wave solutions $psi(x) = mathrme^mathrmipx$ and $psi^ast(x) = mathrme^-mathrmipx$ that are linearly-independent complex conjugates with the same energy that differ in the sign of their expectation value for the momentum operator $p$.







      share|cite|improve this answer









      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "151"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468127%2fpicking-the-different-solutions-to-the-time-independent-schrodinger-eqaution%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Solutions can be degenerate with the same expectation value of the energy, but they can have different expectation values for other operators like angular momentum or it $z$ component.



        For example the hydrogenic wave functions with $n=2$: $2s$ and $2p$. And then there are three different $2p$ wave functions that can be written as linear combinations of $2p_x, 2p_y, 2p_z$ or of the spherical harmonics $Y_ell,m$ with $ell=1$ and $m=-1,0,1$.






        share|cite|improve this answer









        $endgroup$

















          1












          $begingroup$

          Solutions can be degenerate with the same expectation value of the energy, but they can have different expectation values for other operators like angular momentum or it $z$ component.



          For example the hydrogenic wave functions with $n=2$: $2s$ and $2p$. And then there are three different $2p$ wave functions that can be written as linear combinations of $2p_x, 2p_y, 2p_z$ or of the spherical harmonics $Y_ell,m$ with $ell=1$ and $m=-1,0,1$.






          share|cite|improve this answer









          $endgroup$















            1












            1








            1





            $begingroup$

            Solutions can be degenerate with the same expectation value of the energy, but they can have different expectation values for other operators like angular momentum or it $z$ component.



            For example the hydrogenic wave functions with $n=2$: $2s$ and $2p$. And then there are three different $2p$ wave functions that can be written as linear combinations of $2p_x, 2p_y, 2p_z$ or of the spherical harmonics $Y_ell,m$ with $ell=1$ and $m=-1,0,1$.






            share|cite|improve this answer









            $endgroup$



            Solutions can be degenerate with the same expectation value of the energy, but they can have different expectation values for other operators like angular momentum or it $z$ component.



            For example the hydrogenic wave functions with $n=2$: $2s$ and $2p$. And then there are three different $2p$ wave functions that can be written as linear combinations of $2p_x, 2p_y, 2p_z$ or of the spherical harmonics $Y_ell,m$ with $ell=1$ and $m=-1,0,1$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 hours ago









            PieterPieter

            9,09231536




            9,09231536





















                1












                $begingroup$


                ... one can always choose any of these solutions as the solution for the stationary state with energy $E_0$.




                That statement is misleading because of how it uses the word "the," suggesting uniqueness. If both occurrances of "the" were replaced by "a," then the statement would make sense.



                A given observable will typically have different expectation values in two different states with the same energy. For example, when $V=0$, the functions $exp(pm ipx/hbar)$ both have energy $E=p^2/2m$, but they have different eigenvalues ($pm p$) of the momentum operator $P=-ihbarpartial/partial x$.



                (I'm being relaxed here about using words like "eigenstate" for non-normalizable functions, but I think those mathematical technicalities are beside the point of this question.)






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$


                  ... one can always choose any of these solutions as the solution for the stationary state with energy $E_0$.




                  That statement is misleading because of how it uses the word "the," suggesting uniqueness. If both occurrances of "the" were replaced by "a," then the statement would make sense.



                  A given observable will typically have different expectation values in two different states with the same energy. For example, when $V=0$, the functions $exp(pm ipx/hbar)$ both have energy $E=p^2/2m$, but they have different eigenvalues ($pm p$) of the momentum operator $P=-ihbarpartial/partial x$.



                  (I'm being relaxed here about using words like "eigenstate" for non-normalizable functions, but I think those mathematical technicalities are beside the point of this question.)






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$


                    ... one can always choose any of these solutions as the solution for the stationary state with energy $E_0$.




                    That statement is misleading because of how it uses the word "the," suggesting uniqueness. If both occurrances of "the" were replaced by "a," then the statement would make sense.



                    A given observable will typically have different expectation values in two different states with the same energy. For example, when $V=0$, the functions $exp(pm ipx/hbar)$ both have energy $E=p^2/2m$, but they have different eigenvalues ($pm p$) of the momentum operator $P=-ihbarpartial/partial x$.



                    (I'm being relaxed here about using words like "eigenstate" for non-normalizable functions, but I think those mathematical technicalities are beside the point of this question.)






                    share|cite|improve this answer









                    $endgroup$




                    ... one can always choose any of these solutions as the solution for the stationary state with energy $E_0$.




                    That statement is misleading because of how it uses the word "the," suggesting uniqueness. If both occurrances of "the" were replaced by "a," then the statement would make sense.



                    A given observable will typically have different expectation values in two different states with the same energy. For example, when $V=0$, the functions $exp(pm ipx/hbar)$ both have energy $E=p^2/2m$, but they have different eigenvalues ($pm p$) of the momentum operator $P=-ihbarpartial/partial x$.



                    (I'm being relaxed here about using words like "eigenstate" for non-normalizable functions, but I think those mathematical technicalities are beside the point of this question.)







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 hours ago









                    Chiral AnomalyChiral Anomaly

                    12.1k21540




                    12.1k21540





















                        1












                        $begingroup$

                        1. In ordinary quantum mechanics, two wavefunctions represent the same physical state if and only if they are multiples of each other, that is $psi$ and $cpsi$ represent the same state for any $cinmathbbC$. If you insist on wavefunctions being normalized, then $c$ is restricted to complex numbers of absolute value 1, i.e. number of the form $mathrme^mathrmik$ for some $kin[0,2pi)$.



                        2. If $psi(x) = a(x) + mathrmib(x)$ is a solution of the Schrödinger equation, then it is not automatically true that $a(x)$ and $b(x)$ are also solutions. It is "accidentally" true for the time-independent Schrödinger equation because applying complex conjugation shows us directly that $psi^ast(x)$ is a solution if $psi(x)$ is, and $a(x)$ and $b(x)$ can be obtained by linear combinations of $psi(x)$ and $psi^ast(x)$.



                          There are now two cases: If $psi$ and $psi^ast$ are not linearly independent - i.e. one can be obtained from the other by multiplication with a complex constant - then the space of solutions for this energy is still one-dimensional, and there's only a single physical state. If they are linearly independent, then there are at least two distinct physical states with this energy.



                          Note that already the free particle with $V=0$ gives a counter-example to the claim that all solutions for the same energy have the same values for all expectation values. There we have plane wave solutions $psi(x) = mathrme^mathrmipx$ and $psi^ast(x) = mathrme^-mathrmipx$ that are linearly-independent complex conjugates with the same energy that differ in the sign of their expectation value for the momentum operator $p$.







                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          1. In ordinary quantum mechanics, two wavefunctions represent the same physical state if and only if they are multiples of each other, that is $psi$ and $cpsi$ represent the same state for any $cinmathbbC$. If you insist on wavefunctions being normalized, then $c$ is restricted to complex numbers of absolute value 1, i.e. number of the form $mathrme^mathrmik$ for some $kin[0,2pi)$.



                          2. If $psi(x) = a(x) + mathrmib(x)$ is a solution of the Schrödinger equation, then it is not automatically true that $a(x)$ and $b(x)$ are also solutions. It is "accidentally" true for the time-independent Schrödinger equation because applying complex conjugation shows us directly that $psi^ast(x)$ is a solution if $psi(x)$ is, and $a(x)$ and $b(x)$ can be obtained by linear combinations of $psi(x)$ and $psi^ast(x)$.



                            There are now two cases: If $psi$ and $psi^ast$ are not linearly independent - i.e. one can be obtained from the other by multiplication with a complex constant - then the space of solutions for this energy is still one-dimensional, and there's only a single physical state. If they are linearly independent, then there are at least two distinct physical states with this energy.



                            Note that already the free particle with $V=0$ gives a counter-example to the claim that all solutions for the same energy have the same values for all expectation values. There we have plane wave solutions $psi(x) = mathrme^mathrmipx$ and $psi^ast(x) = mathrme^-mathrmipx$ that are linearly-independent complex conjugates with the same energy that differ in the sign of their expectation value for the momentum operator $p$.







                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            1. In ordinary quantum mechanics, two wavefunctions represent the same physical state if and only if they are multiples of each other, that is $psi$ and $cpsi$ represent the same state for any $cinmathbbC$. If you insist on wavefunctions being normalized, then $c$ is restricted to complex numbers of absolute value 1, i.e. number of the form $mathrme^mathrmik$ for some $kin[0,2pi)$.



                            2. If $psi(x) = a(x) + mathrmib(x)$ is a solution of the Schrödinger equation, then it is not automatically true that $a(x)$ and $b(x)$ are also solutions. It is "accidentally" true for the time-independent Schrödinger equation because applying complex conjugation shows us directly that $psi^ast(x)$ is a solution if $psi(x)$ is, and $a(x)$ and $b(x)$ can be obtained by linear combinations of $psi(x)$ and $psi^ast(x)$.



                              There are now two cases: If $psi$ and $psi^ast$ are not linearly independent - i.e. one can be obtained from the other by multiplication with a complex constant - then the space of solutions for this energy is still one-dimensional, and there's only a single physical state. If they are linearly independent, then there are at least two distinct physical states with this energy.



                              Note that already the free particle with $V=0$ gives a counter-example to the claim that all solutions for the same energy have the same values for all expectation values. There we have plane wave solutions $psi(x) = mathrme^mathrmipx$ and $psi^ast(x) = mathrme^-mathrmipx$ that are linearly-independent complex conjugates with the same energy that differ in the sign of their expectation value for the momentum operator $p$.







                            share|cite|improve this answer









                            $endgroup$



                            1. In ordinary quantum mechanics, two wavefunctions represent the same physical state if and only if they are multiples of each other, that is $psi$ and $cpsi$ represent the same state for any $cinmathbbC$. If you insist on wavefunctions being normalized, then $c$ is restricted to complex numbers of absolute value 1, i.e. number of the form $mathrme^mathrmik$ for some $kin[0,2pi)$.



                            2. If $psi(x) = a(x) + mathrmib(x)$ is a solution of the Schrödinger equation, then it is not automatically true that $a(x)$ and $b(x)$ are also solutions. It is "accidentally" true for the time-independent Schrödinger equation because applying complex conjugation shows us directly that $psi^ast(x)$ is a solution if $psi(x)$ is, and $a(x)$ and $b(x)$ can be obtained by linear combinations of $psi(x)$ and $psi^ast(x)$.



                              There are now two cases: If $psi$ and $psi^ast$ are not linearly independent - i.e. one can be obtained from the other by multiplication with a complex constant - then the space of solutions for this energy is still one-dimensional, and there's only a single physical state. If they are linearly independent, then there are at least two distinct physical states with this energy.



                              Note that already the free particle with $V=0$ gives a counter-example to the claim that all solutions for the same energy have the same values for all expectation values. There we have plane wave solutions $psi(x) = mathrme^mathrmipx$ and $psi^ast(x) = mathrme^-mathrmipx$ that are linearly-independent complex conjugates with the same energy that differ in the sign of their expectation value for the momentum operator $p$.








                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            ACuriousMindACuriousMind

                            72.9k18130322




                            72.9k18130322



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468127%2fpicking-the-different-solutions-to-the-time-independent-schrodinger-eqaution%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

                                Why is a white electrical wire connected to 2 black wires?How to wire a light fixture with 3 white wires in box?How should I wire a ceiling fan when there's only three wires in the box?Two white, two black, two ground, and red wire in ceiling box connected to switchWhy is there a white wire connected to multiple black wires in my light box?How to wire a light with two white wires and one black wireReplace light switch connected to a power outlet with dimmer - two black wires to one black and redHow to wire a light with multiple black/white/green wires from the ceiling?Ceiling box has 2 black and white wires but fan/ light only has 1 of eachWhy neutral wire connected to load wire?Switch with 2 black, 2 white, 2 ground and 1 red wire connected to ceiling light and a receptacle?

                                चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि