free fall ellipse or parabola? The Next CEO of Stack OverflowHohmann transfer orbit questionsPractical limits on the size of orbiting objects: could two pebbles orbit each otherCan a very small portion of an ellipse be a parabola?Are retrograde capture orbits “easier” than prograde capture orbits?How does acceleration affect the orbit?Prove that orbits are conic sectionsDo the planets really orbit the Sun?Meaning of the focus of an elliptical orbitHow did people get ellipses of Newton's equations of motion and gravitation?Is spacetime in an ellipse around a massive object, or does it just slope down towards the massive object?

What connection does MS Office have to Netscape Navigator?

How to use ReplaceAll on an expression that contains a rule

In the "Harry Potter and the Order of the Phoenix" video game, what potion is used to sabotage Umbridge's speakers?

How did Beeri the Hittite come up with naming his daughter Yehudit?

What difference does it make using sed with/without whitespaces?

Traduction de « Life is a roller coaster »

How to find image of a complex function with given constraints?

Is it ok to trim down a tube patch?

What does "shotgun unity" refer to here in this sentence?

Is there a way to save my career from absolute disaster?

Strange use of "whether ... than ..." in official text

Can someone explain this formula for calculating Manhattan distance?

Is there an equivalent of cd - for cp or mv

What happened in Rome, when the western empire "fell"?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Which one is the true statement?

Help/tips for a first time writer?

Can Sneak Attack be used when hitting with an improvised weapon?

Defamation due to breach of confidentiality

Film where the government was corrupt with aliens, people sent to kill aliens are given rigged visors not showing the right aliens

what's the use of '% to gdp' type of variables?

I dug holes for my pergola too wide

What was Carter Burke's job for "the company" in Aliens?

How to avoid supervisors with prejudiced views?



free fall ellipse or parabola?



The Next CEO of Stack OverflowHohmann transfer orbit questionsPractical limits on the size of orbiting objects: could two pebbles orbit each otherCan a very small portion of an ellipse be a parabola?Are retrograde capture orbits “easier” than prograde capture orbits?How does acceleration affect the orbit?Prove that orbits are conic sectionsDo the planets really orbit the Sun?Meaning of the focus of an elliptical orbitHow did people get ellipses of Newton's equations of motion and gravitation?Is spacetime in an ellipse around a massive object, or does it just slope down towards the massive object?










1












$begingroup$


Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.










      share|cite|improve this question











      $endgroup$




      Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.







      newtonian-mechanics gravity orbital-motion projectile free-fall






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 22 mins ago









      Aaron Stevens

      13.7k42250




      13.7k42250










      asked 42 mins ago









      user56930user56930

      174




      174




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



          On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



          At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



            On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



            At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



              On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



              At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



                On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



                At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






                share|cite|improve this answer









                $endgroup$



                The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



                On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



                At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 35 mins ago









                Cort AmmonCort Ammon

                24k34779




                24k34779



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

                    Why is a white electrical wire connected to 2 black wires?How to wire a light fixture with 3 white wires in box?How should I wire a ceiling fan when there's only three wires in the box?Two white, two black, two ground, and red wire in ceiling box connected to switchWhy is there a white wire connected to multiple black wires in my light box?How to wire a light with two white wires and one black wireReplace light switch connected to a power outlet with dimmer - two black wires to one black and redHow to wire a light with multiple black/white/green wires from the ceiling?Ceiling box has 2 black and white wires but fan/ light only has 1 of eachWhy neutral wire connected to load wire?Switch with 2 black, 2 white, 2 ground and 1 red wire connected to ceiling light and a receptacle?

                    चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि