is the intersection of subgroups a subgroup of each subgroupA group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups

Fencing style for blades that can attack from a distance

Are the number of citations and number of published articles the most important criteria for a tenure promotion?

Can I make popcorn with any corn?

Which models of the Boeing 737 are still in production?

Modeling an IPv4 Address

What do you call a Matrix-like slowdown and camera movement effect?

Have astronauts in space suits ever taken selfies? If so, how?

is the intersection of subgroups a subgroup of each subgroup

strToHex ( string to its hex representation as string)

What are these boxed doors outside store fronts in New York?

How to format long polynomial?

Today is the Center

Can divisibility rules for digits be generalized to sum of digits

Smoothness of finite-dimensional functional calculus

How does one intimidate enemies without having the capacity for violence?

Example of a continuous function that don't have a continuous extension

can i play a electric guitar through a bass amp?

Is it legal for company to use my work email to pretend I still work there?

What does CI-V stand for?

If I cast Expeditious Retreat, can I Dash as a bonus action on the same turn?

To string or not to string

What's the point of deactivating Num Lock on login screens?

"You are your self first supporter", a more proper way to say it

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?



is the intersection of subgroups a subgroup of each subgroup


A group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups













1












$begingroup$



Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




I am guessing this does not hold but why?



Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



Much thanks in advance!










share|cite|improve this question











$endgroup$
















    1












    $begingroup$



    Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




    I am guessing this does not hold but why?



    Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



    Much thanks in advance!










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$



      Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




      I am guessing this does not hold but why?



      Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



      Much thanks in advance!










      share|cite|improve this question











      $endgroup$





      Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




      I am guessing this does not hold but why?



      Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



      Much thanks in advance!







      abstract-algebra group-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 44 mins ago









      Shaun

      10.3k113686




      10.3k113686










      asked 6 hours ago









      JustWanderingJustWandering

      592




      592




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




          Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




          1. $e in H$,

          2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

          3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



          These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



          Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



          In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






          share|cite|improve this answer











          $endgroup$




















            1












            $begingroup$

            The subgroup test is:




            $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




            Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




              Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




              1. $e in H$,

              2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

              3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



              These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



              Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



              In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




                Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




                1. $e in H$,

                2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

                3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



                These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



                Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



                In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




                  Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




                  1. $e in H$,

                  2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

                  3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



                  These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



                  Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



                  In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






                  share|cite|improve this answer











                  $endgroup$



                  It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




                  Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




                  1. $e in H$,

                  2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

                  3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



                  These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



                  Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



                  In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 5 hours ago

























                  answered 6 hours ago









                  rolandcyprolandcyp

                  2,309422




                  2,309422





















                      1












                      $begingroup$

                      The subgroup test is:




                      $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                      Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        The subgroup test is:




                        $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                        Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          The subgroup test is:




                          $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                          Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






                          share|cite|improve this answer









                          $endgroup$



                          The subgroup test is:




                          $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                          Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          janmarqzjanmarqz

                          6,25741630




                          6,25741630



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

                              Why is a white electrical wire connected to 2 black wires?How to wire a light fixture with 3 white wires in box?How should I wire a ceiling fan when there's only three wires in the box?Two white, two black, two ground, and red wire in ceiling box connected to switchWhy is there a white wire connected to multiple black wires in my light box?How to wire a light with two white wires and one black wireReplace light switch connected to a power outlet with dimmer - two black wires to one black and redHow to wire a light with multiple black/white/green wires from the ceiling?Ceiling box has 2 black and white wires but fan/ light only has 1 of eachWhy neutral wire connected to load wire?Switch with 2 black, 2 white, 2 ground and 1 red wire connected to ceiling light and a receptacle?

                              चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि