In a Spin are Both Wings Stalled?Is spin recovery possible in an airliner?How long is spin training good for in the USA?Is it possible to recover from a flat spin?If a commercial airliner enters into a spin at high altitude, is it possible to recover?How to enter an inverted spin?Is it possible to perform a spin recovery in IMC?What is a good spin aircraft for someone that is heavy?What altitude to fly on a STAR when it reads “expect”?Does it really take 9000 feet to recover from a spin in a P-51 Mustang?Why aren't airliners spin-tested?

Etiquette around loan refinance - decision is going to cost first broker a lot of money

Why does the EU insist on the backstop when it is clear in a no deal scenario they still intend to keep an open border?

Anagram holiday

How do I write bicross product symbols in latex?

Why is the ratio of two extensive quantities always intensive?

Is it possible to download Internet Explorer on my Mac running OS X El Capitan?

Is it legal for company to use my work email to pretend I still work there?

What's the difference between 'rename' and 'mv'?

intersection of two sorted vectors in C++

Emailing HOD to enhance faculty application

1960's book about a plague that kills all white people

AES: Why is it a good practice to use only the first 16bytes of a hash for encryption?

Blender 2.8 I can't see vertices, edges or faces in edit mode

90's TV series where a boy goes to another dimension through portal near power lines

Why is Collection not simply treated as Collection<?>

Took a trip to a parallel universe, need help deciphering

What killed these X2 caps?

How to draw the figure with four pentagons?

Infinite Abelian subgroup of infinite non Abelian group example

Where does SFDX store details about scratch orgs?

How badly should I try to prevent a user from XSSing themselves?

Why do I get two different answers for this counting problem?

Neighboring nodes in the network

Is there a hemisphere-neutral way of specifying a season?



In a Spin are Both Wings Stalled?


Is spin recovery possible in an airliner?How long is spin training good for in the USA?Is it possible to recover from a flat spin?If a commercial airliner enters into a spin at high altitude, is it possible to recover?How to enter an inverted spin?Is it possible to perform a spin recovery in IMC?What is a good spin aircraft for someone that is heavy?What altitude to fly on a STAR when it reads “expect”?Does it really take 9000 feet to recover from a spin in a P-51 Mustang?Why aren't airliners spin-tested?













3












$begingroup$


I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?










share|improve this question









$endgroup$
















    3












    $begingroup$


    I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




    In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




    So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?










    share|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




      In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




      So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?










      share|improve this question









      $endgroup$




      I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




      In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




      So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?







      spins faa-knowledge-test






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      DLHDLH

      2,593829




      2,593829




















          3 Answers
          3






          active

          oldest

          votes


















          0












          $begingroup$

          No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



          During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



          As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



          flow over a spinning wing



          On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



          Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






          share|improve this answer











          $endgroup$












          • $begingroup$
            So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
            $endgroup$
            – DLH
            57 mins ago










          • $begingroup$
            @DLH: In a way, yes. But not cyclic, which causes all kind of funny oscillations from hysteresis on helicopter blades.
            $endgroup$
            – Peter Kämpf
            42 mins ago










          • $begingroup$
            The argument that at least one wing has partially attached flow is meaningless. The question is, is the wing as a whole exhibiting the behavior in the plot I used. Airplanes stall all the time with portions of the wing unstalled. That’s why we twist the wing aero or geometrically, to keep roll control “post stall”.
            $endgroup$
            – MikeY
            27 mins ago











          • $begingroup$
            @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
            $endgroup$
            – DLH
            17 mins ago










          • $begingroup$
            "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
            $endgroup$
            – Fattie
            4 mins ago


















          3












          $begingroup$

          Yes, both are stalled.



          I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift. That's the top of the blue curve in the plot below.



          At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



          At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



          enter image description here



          Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



          Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



          So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



          JMHO!






          share|improve this answer









          $endgroup$








          • 2




            $begingroup$
            I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
            $endgroup$
            – DLH
            1 hour ago










          • $begingroup$
            @DLH I think this is a poor answer because it is wrong.
            $endgroup$
            – Peter Kämpf
            1 hour ago











          • $begingroup$
            @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
            $endgroup$
            – DLH
            1 hour ago


















          1












          $begingroup$

          A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






          share|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "528"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62020%2fin-a-spin-are-both-wings-stalled%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



            During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



            As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



            flow over a spinning wing



            On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



            Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






            share|improve this answer











            $endgroup$












            • $begingroup$
              So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
              $endgroup$
              – DLH
              57 mins ago










            • $begingroup$
              @DLH: In a way, yes. But not cyclic, which causes all kind of funny oscillations from hysteresis on helicopter blades.
              $endgroup$
              – Peter Kämpf
              42 mins ago










            • $begingroup$
              The argument that at least one wing has partially attached flow is meaningless. The question is, is the wing as a whole exhibiting the behavior in the plot I used. Airplanes stall all the time with portions of the wing unstalled. That’s why we twist the wing aero or geometrically, to keep roll control “post stall”.
              $endgroup$
              – MikeY
              27 mins ago











            • $begingroup$
              @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
              $endgroup$
              – DLH
              17 mins ago










            • $begingroup$
              "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
              $endgroup$
              – Fattie
              4 mins ago















            0












            $begingroup$

            No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



            During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



            As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



            flow over a spinning wing



            On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



            Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






            share|improve this answer











            $endgroup$












            • $begingroup$
              So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
              $endgroup$
              – DLH
              57 mins ago










            • $begingroup$
              @DLH: In a way, yes. But not cyclic, which causes all kind of funny oscillations from hysteresis on helicopter blades.
              $endgroup$
              – Peter Kämpf
              42 mins ago










            • $begingroup$
              The argument that at least one wing has partially attached flow is meaningless. The question is, is the wing as a whole exhibiting the behavior in the plot I used. Airplanes stall all the time with portions of the wing unstalled. That’s why we twist the wing aero or geometrically, to keep roll control “post stall”.
              $endgroup$
              – MikeY
              27 mins ago











            • $begingroup$
              @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
              $endgroup$
              – DLH
              17 mins ago










            • $begingroup$
              "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
              $endgroup$
              – Fattie
              4 mins ago













            0












            0








            0





            $begingroup$

            No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



            During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



            As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



            flow over a spinning wing



            On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



            Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






            share|improve this answer











            $endgroup$



            No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



            During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



            As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



            flow over a spinning wing



            On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



            Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 1 hour ago

























            answered 1 hour ago









            Peter KämpfPeter Kämpf

            161k12411654




            161k12411654











            • $begingroup$
              So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
              $endgroup$
              – DLH
              57 mins ago










            • $begingroup$
              @DLH: In a way, yes. But not cyclic, which causes all kind of funny oscillations from hysteresis on helicopter blades.
              $endgroup$
              – Peter Kämpf
              42 mins ago










            • $begingroup$
              The argument that at least one wing has partially attached flow is meaningless. The question is, is the wing as a whole exhibiting the behavior in the plot I used. Airplanes stall all the time with portions of the wing unstalled. That’s why we twist the wing aero or geometrically, to keep roll control “post stall”.
              $endgroup$
              – MikeY
              27 mins ago











            • $begingroup$
              @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
              $endgroup$
              – DLH
              17 mins ago










            • $begingroup$
              "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
              $endgroup$
              – Fattie
              4 mins ago
















            • $begingroup$
              So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
              $endgroup$
              – DLH
              57 mins ago










            • $begingroup$
              @DLH: In a way, yes. But not cyclic, which causes all kind of funny oscillations from hysteresis on helicopter blades.
              $endgroup$
              – Peter Kämpf
              42 mins ago










            • $begingroup$
              The argument that at least one wing has partially attached flow is meaningless. The question is, is the wing as a whole exhibiting the behavior in the plot I used. Airplanes stall all the time with portions of the wing unstalled. That’s why we twist the wing aero or geometrically, to keep roll control “post stall”.
              $endgroup$
              – MikeY
              27 mins ago











            • $begingroup$
              @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
              $endgroup$
              – DLH
              17 mins ago










            • $begingroup$
              "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
              $endgroup$
              – Fattie
              4 mins ago















            $begingroup$
            So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
            $endgroup$
            – DLH
            57 mins ago




            $begingroup$
            So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
            $endgroup$
            – DLH
            57 mins ago












            $begingroup$
            @DLH: In a way, yes. But not cyclic, which causes all kind of funny oscillations from hysteresis on helicopter blades.
            $endgroup$
            – Peter Kämpf
            42 mins ago




            $begingroup$
            @DLH: In a way, yes. But not cyclic, which causes all kind of funny oscillations from hysteresis on helicopter blades.
            $endgroup$
            – Peter Kämpf
            42 mins ago












            $begingroup$
            The argument that at least one wing has partially attached flow is meaningless. The question is, is the wing as a whole exhibiting the behavior in the plot I used. Airplanes stall all the time with portions of the wing unstalled. That’s why we twist the wing aero or geometrically, to keep roll control “post stall”.
            $endgroup$
            – MikeY
            27 mins ago





            $begingroup$
            The argument that at least one wing has partially attached flow is meaningless. The question is, is the wing as a whole exhibiting the behavior in the plot I used. Airplanes stall all the time with portions of the wing unstalled. That’s why we twist the wing aero or geometrically, to keep roll control “post stall”.
            $endgroup$
            – MikeY
            27 mins ago













            $begingroup$
            @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
            $endgroup$
            – DLH
            17 mins ago




            $begingroup$
            @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
            $endgroup$
            – DLH
            17 mins ago












            $begingroup$
            "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
            $endgroup$
            – Fattie
            4 mins ago




            $begingroup$
            "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
            $endgroup$
            – Fattie
            4 mins ago











            3












            $begingroup$

            Yes, both are stalled.



            I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift. That's the top of the blue curve in the plot below.



            At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



            At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



            enter image description here



            Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



            Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



            So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



            JMHO!






            share|improve this answer









            $endgroup$








            • 2




              $begingroup$
              I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
              $endgroup$
              – DLH
              1 hour ago










            • $begingroup$
              @DLH I think this is a poor answer because it is wrong.
              $endgroup$
              – Peter Kämpf
              1 hour ago











            • $begingroup$
              @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
              $endgroup$
              – DLH
              1 hour ago















            3












            $begingroup$

            Yes, both are stalled.



            I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift. That's the top of the blue curve in the plot below.



            At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



            At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



            enter image description here



            Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



            Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



            So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



            JMHO!






            share|improve this answer









            $endgroup$








            • 2




              $begingroup$
              I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
              $endgroup$
              – DLH
              1 hour ago










            • $begingroup$
              @DLH I think this is a poor answer because it is wrong.
              $endgroup$
              – Peter Kämpf
              1 hour ago











            • $begingroup$
              @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
              $endgroup$
              – DLH
              1 hour ago













            3












            3








            3





            $begingroup$

            Yes, both are stalled.



            I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift. That's the top of the blue curve in the plot below.



            At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



            At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



            enter image description here



            Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



            Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



            So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



            JMHO!






            share|improve this answer









            $endgroup$



            Yes, both are stalled.



            I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift. That's the top of the blue curve in the plot below.



            At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



            At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



            enter image description here



            Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



            Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



            So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



            JMHO!







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 2 hours ago









            MikeYMikeY

            54516




            54516







            • 2




              $begingroup$
              I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
              $endgroup$
              – DLH
              1 hour ago










            • $begingroup$
              @DLH I think this is a poor answer because it is wrong.
              $endgroup$
              – Peter Kämpf
              1 hour ago











            • $begingroup$
              @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
              $endgroup$
              – DLH
              1 hour ago












            • 2




              $begingroup$
              I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
              $endgroup$
              – DLH
              1 hour ago










            • $begingroup$
              @DLH I think this is a poor answer because it is wrong.
              $endgroup$
              – Peter Kämpf
              1 hour ago











            • $begingroup$
              @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
              $endgroup$
              – DLH
              1 hour ago







            2




            2




            $begingroup$
            I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
            $endgroup$
            – DLH
            1 hour ago




            $begingroup$
            I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
            $endgroup$
            – DLH
            1 hour ago












            $begingroup$
            @DLH I think this is a poor answer because it is wrong.
            $endgroup$
            – Peter Kämpf
            1 hour ago





            $begingroup$
            @DLH I think this is a poor answer because it is wrong.
            $endgroup$
            – Peter Kämpf
            1 hour ago













            $begingroup$
            @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
            $endgroup$
            – DLH
            1 hour ago




            $begingroup$
            @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
            $endgroup$
            – DLH
            1 hour ago











            1












            $begingroup$

            A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






            share|improve this answer









            $endgroup$

















              1












              $begingroup$

              A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






              share|improve this answer









              $endgroup$















                1












                1








                1





                $begingroup$

                A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






                share|improve this answer









                $endgroup$



                A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 1 hour ago









                John KJohn K

                24.3k13674




                24.3k13674



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Aviation Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62020%2fin-a-spin-are-both-wings-stalled%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    कुँवर स्रोत दिक्चालन सूची"कुँवर""राणा कुँवरके वंशावली"

                    Why is a white electrical wire connected to 2 black wires?How to wire a light fixture with 3 white wires in box?How should I wire a ceiling fan when there's only three wires in the box?Two white, two black, two ground, and red wire in ceiling box connected to switchWhy is there a white wire connected to multiple black wires in my light box?How to wire a light with two white wires and one black wireReplace light switch connected to a power outlet with dimmer - two black wires to one black and redHow to wire a light with multiple black/white/green wires from the ceiling?Ceiling box has 2 black and white wires but fan/ light only has 1 of eachWhy neutral wire connected to load wire?Switch with 2 black, 2 white, 2 ground and 1 red wire connected to ceiling light and a receptacle?

                    चैत्य भूमि चित्र दीर्घा सन्दर्भ बाहरी कडियाँ दिक्चालन सूची"Chaitya Bhoomi""Chaitya Bhoomi: Statue of Equality in India""Dadar Chaitya Bhoomi: Statue of Equality in India""Ambedkar memorial: Centre okays transfer of Indu Mill land"चैत्यभमि